OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1997–2001

Saturation of atomic transitions using subwavelength diameter tapered optical fibers in rubidium vapor

D. E. Jones, J. D. Franson, and T. B. Pittman  »View Author Affiliations

JOSA B, Vol. 31, Issue 8, pp. 1997-2001 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally investigate ultralow-power saturation of the rubidium D2 transitions using a tapered optical fiber (TOF) suspended in a warm Rb vapor. A direct comparison of power-dependent absorption measurements for the TOF system with those obtained in a standard free-space vapor cell system highlights the differences in saturation behavior for the two systems. The effects of hyperfine pumping in the TOF system are found to be minimized due to the short atomic transit times through the highly confined evanescent optical mode guided by the TOF. The TOF system data are well-fit by a relatively simple empirical absorption model that indicates nanoWatt-level saturation powers.

© 2014 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6460) Spectroscopy : Spectroscopy, saturation
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:

Original Manuscript: March 27, 2014
Manuscript Accepted: June 16, 2014
Published: July 31, 2014

D. E. Jones, J. D. Franson, and T. B. Pittman, "Saturation of atomic transitions using subwavelength diameter tapered optical fibers in rubidium vapor," J. Opt. Soc. Am. B 31, 1997-2001 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008). [CrossRef]
  2. T. B. Pittman, D. E. Jones, and J. D. Franson, “Ultralow-power nonlinear optics using tapered optical fibers in metastable xenon,” Phys. Rev. A 88, 053804 (2013). [CrossRef]
  3. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of sub-wavelength diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004). [CrossRef]
  4. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010). [CrossRef]
  5. K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19, 22874 (2011). [CrossRef]
  6. M. M. Lai, J. D. Franson, and T. B. Pittman, “Transmission degradation and preservation for tapered optical fibers in rubidium vapor,” Appl. Opt. 52, 2595–2601 (2013). [CrossRef]
  7. V. Venkataraman, K. Saha, and A. L. Gaeta, “Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing,” Nat. Photonics 7, 138–141 (2012). [CrossRef]
  8. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 2003).
  9. P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008). [CrossRef]
  10. T. M. Stace and A. N. Luiten, “Theory of spectroscopy in an optically pumped effusive vapor,” Phys. Rev. A 81, 033848 (2010). [CrossRef]
  11. D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631–637 (2004). [CrossRef]
  12. B. E. Sherlock and I. G. Hughes, “How weak is a weak probe laser in spectroscopy?” Am. J. Phys. 77, 111–115 (2009). [CrossRef]
  13. G. Moon and H.-R. Noh, “A comparison of the dependence of saturated absorption signals on pump beam diameter and intensity,” J. Opt. Soc. Am. B 25, 2101–2106 (2008). [CrossRef]
  14. G. Moon and H.-R. Noh, “Observation of nonstationary effects in saturation spectroscopy,” Opt. Commun. 281, 294–298 (2008). [CrossRef]
  15. T. Lindvall and I. Tittonen, “Interaction-time-averaged optical pumping in alkali-metal-atom Doppler spectroscopy,” Phys. Rev. A 80, 032505 (2009). [CrossRef]
  16. C. Perrella, P. S. Light, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution optical spectroscopy in a hollow-core photonic crystal fiber,” Phys. Rev. A 85, 012518 (2012). [CrossRef]
  17. M. R. Sprague, D. G. England, A. Abdolvand, J. Nunn, X. M. Jin, W. S. Kolthammer, M. Barbieri, B. Rigal, P. S. Michelberger, T. F. M. Champion, P. S. J. Russell, and I. A. Walmsley, “Efficient optical pumping and high optical depth in a hollow-core photonic-crystal fibre for a broadband quantum memory,” New J. Phys. 15, 055013 (2013). [CrossRef]
  18. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006). [CrossRef]
  19. A. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, “Spectroscopy of Rb atoms in hollow-core fibers,” Phys. Rev. A 81, 053825 (2010). [CrossRef]
  20. H. You, S. M. Hendrickson, and J. D. Franson, “Analysis of enhanced two-photon absorption in tapered optical fibers,” Phys. Rev. A 78, 053803 (2008). [CrossRef]
  21. M. Gorris-Neveux, P. Monnot, M. Fichet, M. Ducloy, R. Barbe, and J. C. Keller, “Doppler-free reflection spectroscopy of rubidium D1 line in optically dense vapour,” Opt. Commun. 134, 85–90 (1997). [CrossRef]
  22. T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992). [CrossRef]
  23. A. Watkins, V. B. Tiwari, J. M. Ward, K. Deasy, and S. N. Chormaic, “Observation of Zeeman shift in the rubidium D2 line using an optical nanofiber in vapor,” Proc. SPIE 8785, 87850S (2013). [CrossRef]
  24. A. Lurie, P. S. Light, J. Anstie, T. M. Stace, P. C. Abbott, F. Benabid, and A. N. Luiten, “Saturation spectroscopy of iodine in hollow-core optical fiber,” Opt. Express 20, 11906 (2012). [CrossRef]
  25. J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium D1 line,” J. Phys. B 29, 2629–2643 (1996). [CrossRef]
  26. I. E. Olivares, “Transmission of tunable diode laser emission, through rubidium vapor, as a function of laser intensity,” J. Opt. Soc. Am. B 30, 945–949 (2013). [CrossRef]
  27. A. Yariv, Quantum Electronics (Wiley, 1989).
  28. A. Corney, Atomic and Laser Spectroscopy (Oxford University, 2006).
  29. D. A. Steck, “Rubidium 85 D line data,” 2012, http://steck.us/alkalidata/ .
  30. C. Perrella, P. S. Light, J. D. Anstie, T. M. Stace, F. Benabid, and A. N. Luiten, “High-resolution two-photon spectroscopy of rubidium within a confined geometry,” Phys. Rev. A 87, 103818 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited