OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2012–2020

Stochastic noise amplification in noninstantaneous Kerr media

G. L. da Silva, T. P. Lobo, and A. A. Canabarro  »View Author Affiliations

JOSA B, Vol. 31, Issue 9, pp. 2012-2020 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Considering noninstantaneous Kerr nonlinearity, the propagation of a partially coherent optical beam is theoretically investigated by using extensions of the nonlinear Schrödinger equation (NLSE). In order to account for the partial coherence of the beam, a phase-diffusion model is used for the laser beam. To introduce the finite response time of the medium, a time-dependent nonlinear response is incorporated in the system of the NLSE using the Debye relaxation model. We analytically deduce the dispersion relation and numerically compute the gain spectra along with relevant second-order statistical quantities. A detailed study of how these statistical properties are influenced by the group velocity dispersion regime as well as by the delayed nonlinear response of the material is presented. The distinct features for slow and fast delayed nonlinear response are also emphasized.

© 2014 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(190.3100) Nonlinear optics : Instabilities and chaos
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Nonlinear Optics

Original Manuscript: April 4, 2014
Revised Manuscript: July 3, 2014
Manuscript Accepted: July 3, 2014
Published: August 5, 2014

G. L. da Silva, T. P. Lobo, and A. A. Canabarro, "Stochastic noise amplification in noninstantaneous Kerr media," J. Opt. Soc. Am. B 31, 2012-2020 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  2. J. Fatome, S. Pitois, and G. Millot, “Measurement of nonlinear and chromatic dispersion parameters of optical fibers using modulation instability,” Opt. Fiber Technol. 12, 243–250 (2006). [CrossRef]
  3. N. Da Dalt, C. De Angelis, G. F. Nalesso, and M. Santagiustina, “Dynamics of induced modulational instability in waveguides with saturable nonlinearity,” Opt. Commun. 121, 69–72 (1995). [CrossRef]
  4. Y. D. Gong, P. Shum, D. Tang, C. Lu, and X. Guo, “660  GHz solitons source based on modulation instability in short cavity,” Opt. Express 11, 2480–2485 (2003). [CrossRef]
  5. V. V. Konotop and M. Salerno, “Modulational instability in Bose–Einstein condensates in optical lattices,” Phys. Rev. A 65, 021602 (2002). [CrossRef]
  6. L. D. Carr and J. Brand, “Spontaneous soliton formation and modulational instability in Bose–Einstein condensates,” Phys. Rev. Lett. 92, 040401 (2004). [CrossRef]
  7. M. Centurion, M. A. Porter, Y. Pu, P. G. Kevrekidis, D. J. Frantzeskakis, and D. Psaltis, “Modulational instability in nonlinearity-managed optical media,” Phys. Rev. A 75, 063804 (2007). [CrossRef]
  8. C.-S. Chou and M.-F. Shih, “Slow light achieved by non-instantaneous modulation instability,” J. Opt. A Pure Appl. Opt. 11, 105204 (2009). [CrossRef]
  9. M. Onorato, A. R. Osborne, and M. Serio, “Modulation instability in crossing sea states: a possible mechanism for the formation of freak waves,” Phys. Rev. Lett. 96, 014503 (2006). [CrossRef]
  10. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007). [CrossRef]
  11. M. Stepić, A. Maluckov, M. Stojanović, F. Chen, and D. Kip, “Modulational instability and solitary waves in one-dimensional lattices with intensity-resonant nonlinearity,” Phys. Rev. A 78, 043819 (2008). [CrossRef]
  12. G. L. da Silva, I. Gleria, M. L. Lyra, and A. S. B. Sombra, “Modulational instability in lossless fibers with saturable delayed nonlinear response,” J. Opt. Soc. Am. B 26, 183–188 (2009). [CrossRef]
  13. A. A. Canabarro, B. Santos, I. Gleria, M. L. Lyra, and A. S. B. Sombra, “Interplay of XPM and nonlinear response time in the modulational instability of copropagating optical pulses,” J. Opt. Soc. Am. B 27, 1878–1885 (2010). [CrossRef]
  14. C. Cambournac, H. Maillotte, E. Lantz, J. M. Dudley, and M. Chauvet, “Spatiotemporal behavior of periodic arrays of spatial solitons in a planar waveguide with relaxing Kerr nonlinearity,” J. Opt. Soc. Am. B 19, 574–585 (2002). [CrossRef]
  15. M. J. Potasek, “Modulation instability in an extended nonlinear Schrödinger equation,” Opt. Lett. 12, 921–923 (1987). [CrossRef]
  16. B. Kliber, C. Michel, J. Garnier, and A. Picozzi, “Temporal dynamics of incoherent waves in noninstantaneous response nonlinear Kerr media,” Opt. Lett. 37, 2472–2474 (2012). [CrossRef]
  17. X. Liu, J. W. Haus, and S. M. Shahriar, “Modulation instability for a relaxational Kerr medium,” Opt. Commun. 281, 2907–2912 (2008). [CrossRef]
  18. K. Nithyanandan and K. Porsezian, “Interplay between relaxation of nonlinear response and coupling coefficient dispersion in the instability spectra of dual core optical fiber,” Opt. Commun. 303, 46–55 (2013). [CrossRef]
  19. S. Trillo, S. Wabnitz, G. I. Stegeman, and E. M. Wright, “Parametric amplification and modulational instabilities in dispersive nonlinear directional couplers with relaxing nonlinearity,” J. Opt. Soc. Am. B 6, 889–900 (1989). [CrossRef]
  20. G. Carbou and B. Hanouzet, “Relaxation approximation of the Kerr model for the impedance initial-boundary value problem,” in Proceedings of the 6th AIMS International Conference (2007), paper 212220.
  21. I. Velchev, R. Pattnaik, and J. Toulouse, “Two-beam modulation instability in noninstantaneous nonlinear media,” Phys. Rev. Lett. 91, 093905 (2003). [CrossRef]
  22. J. Garnier, G. Xu, S. Trillo, and A. Picozzi, “Incoherent dispersive shocks in the spectral evolution of random waves,” Phys. Rev. Lett. 111, 113902 (2013). [CrossRef]
  23. M. Mitchell, Z. Chen, M. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett. 77, 490–493 (1996). [CrossRef]
  24. M. Soljacić, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. 84, 467–470 (2000). [CrossRef]
  25. T. Hansson, D. Anderson, M. Lisak, V. E. Semenov, and U. Österberg, “Quasilinear evolution and saturation of the modulational instability of partially coherent optical waves,” Phys. Rev. A 78, 011807 (2008). [CrossRef]
  26. S. B. Cavalcanti, M. Yu, and G. P. Agrawal, “Noise amplification in dispersive nonlinear media,” Phys. Rev. A 51, 4086–4092 (1995). [CrossRef]
  27. B. Hall, M. Lisak, D. Anderson, R. Fedele, and V. E. Semenov, “Statistical theory for incoherent light propagation in nonlinear media,” Phys. Rev. E 65, 035602 (2002). [CrossRef]
  28. D. Kip, M. Soljacić, M. Segev, E. Eugenieva, and D. N. Christodoulides, “Modulation instability and pattern formation in spatially incoherent light beams,” Science 290, 495–498 (2000). [CrossRef]
  29. J. Klinger, H. Martin, and Z. Chen, “Experiments on induced modulational instability of an incoherent optical beam,” Opt. Lett. 26, 271–273 (2001). [CrossRef]
  30. A. Picozzi, S. Pitois, and G. Millot, “Spectral incoherent solitons: a localized soliton behavior in the frequency domain,” Phys. Rev. Lett. 101, 093901 (2008). [CrossRef]
  31. B. Kibler, C. Michel, A. Kudlinski, B. Barviau, G. Millot, and A. Picozzi, “Emergence of spectral incoherent solitons through supercontinuum generation in photonic crystal fiber,” Phys. Rev. E 84, 066605 (2011). [CrossRef]
  32. A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep., doi:10.1016/2014.03.002 (to be published). [CrossRef]
  33. C. Condit, M. A. Schmidt, P. St, J. Russel, and F. Biancalana, “Highly noninstantaneous solitons in liquid-core photonic crystal fibers,” Phys. Rev. Lett. 105, 263902 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited