OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2021–2028

Potential for large optical gain improvement of erbium-doped slot waveguide amplifiers in silicon photonics

Samuel Serna, Weiwei Zhang, Xavier Leroux, Dingshan Gao, Daming Zhang, Laurent Vivien, and Eric Cassan  »View Author Affiliations

JOSA B, Vol. 31, Issue 9, pp. 2021-2028 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (933 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The potential for on-chip optical amplification at λs=1530nm in silicon photonics using erbium-doped rich polymers integrated in silicon-slot waveguides is investigated by using a four-level spectroscopic model and a pumping wavelength of 1.48 μm. It is shown that the key parameter driving the whole amplification efficiency is the slot waveguide linear loss level, while optimization of the hollow core waveguide cross section leads to a slot width around 130 nm. Our investigations show that an on-chip optical gain of about 10 dB can be obtained with 7dB/cm loss slot waveguides. Such a propagation loss is directly sustained by experimental results obtained for photonic structures fabricated using silicon technology. Due to the likelihood of improved technological processes in the near future, the slot waveguide loss level was swept in the 310dB/cm range, showing that on-chip optical gain up to 30 dB can be seriously envisaged for slot waveguides with optimized optical losses around 3dB/cm.

© 2014 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Integrated Optics

Original Manuscript: April 24, 2014
Revised Manuscript: June 20, 2014
Manuscript Accepted: June 21, 2014
Published: August 5, 2014

Samuel Serna, Weiwei Zhang, Xavier Leroux, Dingshan Gao, Daming Zhang, Laurent Vivien, and Eric Cassan, "Potential for large optical gain improvement of erbium-doped slot waveguide amplifiers in silicon photonics," J. Opt. Soc. Am. B 31, 2021-2028 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Vivien and L. Pavesi, Handbook of Silicon Photonics, Series in Optics and Optoelectronics (Taylor & Francis, 2013).
  2. J. E. Bowers, H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, M. J. Paniccia, O. Cohen, and O. Raday, “Integrated optical amplifiers on silicon waveguides,” IPNRA Conference, Hybrid Integration Symposium, Salt Lake City, Utah, 2007.
  3. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005). [CrossRef]
  4. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005). [CrossRef]
  5. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef]
  6. A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26, 225–284 (2002). [CrossRef]
  7. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5980 (2007). [CrossRef]
  8. J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170  Gbits/s transmission in an erbium-doped waveguide amplifier,” Opt. Express 17, 22201–22208 (2009). [CrossRef]
  9. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80  nm and 2  dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27, 187–196 (2010). [CrossRef]
  10. J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Worhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40  nm bandwidth,” IEEE Photon. Technol. Lett. 22, 278–280 (2010). [CrossRef]
  11. V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef]
  12. C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13, 10092–10101 (2005). [CrossRef]
  13. C. Chen, D. Zhang, T. Li, D. Zhang, L. Song, and Z. Zhen, “Erbium-ytterbium codoped waveguide amplifier fabricated with solution-processable complex,” Appl. Phys. Lett. 94, 041119 (2009). [CrossRef]
  14. A. Spott, T. Baehr-Jones, R. Ding, Y. Liu, R. Bojko, T. O’Malley, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Photolithographically fabricated low-loss asymmetric silicon slot waveguides,” Opt. Express 19, 10950–10958 (2011). [CrossRef]
  15. D. Zhang, C. Chen, F. Wang, and D. M. Zhang, “Optical gain and upconversion luminescence in LaF3:Er, Yb nanoparticles-doped organic–inorganic hybrid materials waveguide amplifiers,” Appl. Phys. B 98, 791–795 (2010). [CrossRef]
  16. A. E. Siegman, Lasers (University Science Books, 1986).
  17. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101 (2005). [CrossRef]
  18. H. Sun, A. Chen, D. Abeysinghe, A. Szep, and R. S. Kim, “Reduction of scattering loss of silicon slot waveguides by RCA smoothing,” Opt. Lett. 37, 13–15 (2012). [CrossRef]
  19. R. Ding, T. Baehr-Jones, W. J. Kim, X. Xiong, R. Bojko, J. M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in silicon-on-insulator,” Opt. Express 18, 25061–25067 (2010). [CrossRef]
  20. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011). [CrossRef]
  21. A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Liow, M. Hiltunen, A. Tervonen, G. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19, 26275–26282 (2011). [CrossRef]
  22. Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultacompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009). [CrossRef]
  23. R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37, 1427–1429 (2012). [CrossRef]
  24. S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.33.
  25. P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14, 9197–9202 (2006). [CrossRef]
  26. J. H. Ferziger, Numerical Methods for Engineering Application (Wiley-Interscience, 1998).
  27. L. Cognolato, C. S. De Bernardi, M. Ferraris, A. Gnazzo, S. Morasca, and D. Scarano, “Spectroscopic properties of Er3+-doped glasses for the realization of active waveguides by ion-exchange technique,” CSELT Technical Reports XIX, 277–281 (1991).
  28. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991), (soda-lime silicate glass). [CrossRef]
  29. G. N. Van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53  μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996). [CrossRef]
  30. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited