OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2029–2035

Local field effects for spherical quantum dot emitters in the proximity of a planar dielectric interface

J. M. Gordon and Y. N. Gartstein  »View Author Affiliations


JOSA B, Vol. 31, Issue 9, pp. 2029-2035 (2014)
http://dx.doi.org/10.1364/JOSAB.31.002029


View Full Text Article

Enhanced HTML    Acrobat PDF (348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use numerical solutions of macroscopic Maxwell’s equations to study spontaneous emission rates of model spherical quantum dot (QD) emitters in the vicinity of a highly polarizable dielectric substrate. It is demonstrated that extra polarization of the QD body taking place in the interfacial region may lead to appreciable deviations from the rates that would be expected under the assumption of a fixed magnitude of the effective QD transition dipole moment. Illustrations are given for both radiative and nonradiative decay processes, and potential experimental implications are discussed.

© 2014 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(260.2160) Physical optics : Energy transfer
(300.2140) Spectroscopy : Emission
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: April 11, 2014
Revised Manuscript: June 27, 2014
Manuscript Accepted: June 27, 2014
Published: August 5, 2014

Citation
J. M. Gordon and Y. N. Gartstein, "Local field effects for spherical quantum dot emitters in the proximity of a planar dielectric interface," J. Opt. Soc. Am. B 31, 2029-2035 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-9-2029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. V. Talapin, J. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110, 389–458 (2010). [CrossRef]
  2. D. V. Talapin and J. Steckel, “Quantum dot lightemitting devices,” MRS Bulletin 38, 685–691 (2013). [CrossRef]
  3. S. Lu and A. Madhukar, “Nonradiative resonant excitation transfer from nanocrystal quantum dots to adjacent quantum channels,” Nano Lett. 7, 3443–3451 (2007). [CrossRef]
  4. S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009). [CrossRef]
  5. S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009). [CrossRef]
  6. H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011). [CrossRef]
  7. H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012). [CrossRef]
  8. O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett. 100, 021902 (2012). [CrossRef]
  9. P. Andreakou, M. Brossard, M. Bernechea, G. Konstantatos, and P. Lagoudakis, “Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics,” Proc. SPIE 8256, 82561L (2012). [CrossRef]
  10. M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013). [CrossRef]
  11. H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics,” J. Opt. Soc. Am. B 30, 2401–2408 (2013). [CrossRef]
  12. W. J. I. D. Benedetti, M. T. Nimmo, S. M. Rupich, L. M. Caillard, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient directed energy transfer through size-gradient nanocrystal layers into silicon substrates,” Adv. Funct. Mater., doi: 10.1002/adfm.201400667 (2014).
  13. V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011). [CrossRef]
  14. D. L. Dexter, “Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells,” J. Lumin. 18/19, 779–784 (1979). [CrossRef]
  15. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  16. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, S. A. Rice and I. Prigogine, eds. (Wiley, 1978), Vol. 37, pp. 1–65.
  17. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  18. L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004). [CrossRef]
  19. M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011). [CrossRef]
  20. A. Sommerfeld, “Über die ausbreitung der wellen in der drahtlosen telegraphie,” Ann. Phys. Lpz. 81, 1135–1153 (1926).
  21. A. Sommerfeld, Partial Differential Equations in Physics (Academic, 1964).
  22. L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006). [CrossRef]
  23. C. Creatore and L. C. Andreani, “Quantum theory of spontaneous emission in multilayer dielectric structures,” Phys. Rev. A 78, 063825 (2008). [CrossRef]
  24. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970). [CrossRef]
  25. D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985). [CrossRef]
  26. H. Fröhlich, Theory of Dielectrics (Clarendon, 1949).
  27. C. J. F. Böttcher, Theory of Electric Polarization (Elsevier, 1973).
  28. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Elsevier, 1982).
  29. K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photon. 4, 1–77 (2012). [CrossRef]
  30. P. de Vries and A. Lagendijk, “Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects,” Phys. Rev. Lett. 81, 1381–1384 (1998). [CrossRef]
  31. P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004). [CrossRef]
  32. M. E. Crenshaw, “Comparison of quantum and classical local field effects on two-level atoms in a dielectric,” Phys. Rev. A 78, 053827 (2008). [CrossRef]
  33. M. Donaire, “Electromagnetic vacuum of complex media: dipole emission versus light propagation, vacuum energy, and local field factors,” Phys. Rev. A 83, 022502 (2011). [CrossRef]
  34. A. Thränhardt, C. Ell, G. Khitrova, and H. M. Gibbs, “Relation between dipole moment and radiative lifetime in interface fluctuation qunatum dots,” Phys. Rev. B 65, 035327 (2002). [CrossRef]
  35. S. V. Goupalov, “Light scattering on exciton resonance in a semiconductor quantum dot: exact solution,” Phys. Rev. B 68, 125311 (2003). [CrossRef]
  36. S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004). [CrossRef]
  37. M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011). [CrossRef]
  38. P. T. Kristensen, J. E. Mortensen, P. Lodahl, and S. Stobbe, “Shell theorem for spontaneous emission,” Phys. Rev. B 88, 205308 (2013). [CrossRef]
  39. K. J. Ahn and A. Knorr, “Radiative lifetime of quantum confined excitons near interfaces,” Phys. Rev. B 68, 161307 (2003). [CrossRef]
  40. Y. N. Gartstein and V. M. Agranovich, “Excitons in long molecular chains near the reflecting interface,” Phys. Rev. B 76, 115329 (2007). [CrossRef]
  41. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37–38 (1946). [CrossRef]
  42. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  43. Expression (2) refers to the radiative decay rate. If the embedding medium is dissipative, the decay rate can increase substantially due to the absorption in the medium, particularly due to nonradiative energy transfer, and becomes sensitively dependent on radius a of the spherical cavity [28,50]. For small cavities, the NRET contribution that scales ∝1/a3 can dominate. In the weakly absorbing dielectric, εm′′≪εm′, the NRET contribution corresponds to the absorption due to the electrostatic-like field produced by the effective dipole (3), where one could approximately use just the real part, εm′, of the dielectric constant.
  44. http://www.comsol.com/ .
  45. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983). [CrossRef]
  46. J. M. Gordon and Y. N. Gartstein, “Dielectric polarization, anisotropy and nonradiative energy transfer into nanometer-scale thin semiconducting films,” J. Phys. Condens. Matter 25, 425302 (2013). [CrossRef]
  47. Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, “‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc 130, 5026–5027 (2008). [CrossRef]
  48. H. Htoon, A. V. Malko, D. Bussian, J. Vela, J. A. Hollingsworth, Y. Chen, and V. I. Klimov, “Highly emissive multiexcitons in steady-state photoluminescence of individual giant CdSe/CdS core/shell nanocrystals,” Nano Lett. 10, 2401–2407 (2010). [CrossRef]
  49. A. V. Malko, Y.-S. Park, S. Sampat, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett. 11, 5213–5218 (2011). [CrossRef]
  50. S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited