OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2036–2044

Light trapping in guided modes of thin-film silicon-on-silver waveguides by scattering from a nanostrip

Thomas Søndergaard, Yao-Chung Tsao, Peter K. Kristensen, Thomas G. Pedersen, and Kjeld Pedersen  »View Author Affiliations

JOSA B, Vol. 31, Issue 9, pp. 2036-2044 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light trapping in a waveguide configuration consisting of a thin planar film of hydrogenated amorphous silicon (aSi:H) on a planar silver backreflector is studied theoretically and experimentally. Light trapping is achieved by scattering of light from a silver or silicon nanostrip placed directly on the silicon-film surface. For thin films it is appropriate to think of light trapping in terms of coupling into the guided modes of the air-aSi:H-silver waveguide configuration, which is the focus of this paper. Using the Green’s function surface integral equation method we calculate cross sections governing extinction, out-of-plane scattering, and scattering into guided modes. It is found for geometries with aSi:H-film thicknesses in the range of 50–500 nm that distinct peaks in extinction and scattering cross-section spectra are located at wavelengths determined by the cutoff wavelengths of guided modes, and the wavelengths of those peaks are insensitive to the precise geometry of the scatterer. Measurements of extinction and scattering from an array of silver strips spaced by a large distance of 10 μm on the surface of a geometry with a 290 nm aSi:H-film are found to be in good agreement with theoretical predictions.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.5820) Scattering : Scattering measurements
(310.2790) Thin films : Guided waves
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(290.5825) Scattering : Scattering theory
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: May 22, 2014
Revised Manuscript: July 7, 2014
Manuscript Accepted: July 8, 2014
Published: August 5, 2014

Virtual Issues
Vol. 9, Iss. 11 Virtual Journal for Biomedical Optics

Thomas Søndergaard, Yao-Chung Tsao, Peter K. Kristensen, Thomas G. Pedersen, and Kjeld Pedersen, "Light trapping in guided modes of thin-film silicon-on-silver waveguides by scattering from a nanostrip," J. Opt. Soc. Am. B 31, 2036-2044 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef]
  2. P. Spinelli, V. E. Ferry, H. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonics light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012). [CrossRef]
  3. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996). [CrossRef]
  4. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998). [CrossRef]
  5. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  6. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  7. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008). [CrossRef]
  8. S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light-trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011). [CrossRef]
  9. L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997). [CrossRef]
  10. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17, 1906–1913 (2000). [CrossRef]
  11. J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011). [CrossRef]
  12. Z. Yu and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011). [CrossRef]
  13. M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012). [CrossRef]
  14. J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).
  15. U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19, A1219–A1230 (2011). [CrossRef]
  16. U. W. Paetzold, M. Meier, E. Moulin, V. Smirnov, B. E. Pieters, U. Rau, and R. Carius, “Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells,” Mater. Sci. Eng., B 178, 630–634 (2013). [CrossRef]
  17. Y.-C. Tsao, C. Fisker, and T. G. Pedersen, “Nanoimprinted backside reflectors for a-Si:H thin-film solar cells: critical role of absorber front textures,” Opt. Express 22, A651–A662 (2014). [CrossRef]
  18. C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012). [CrossRef]
  19. R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 6, 2095 (2013).
  20. J. Jung and T. Søndergaard, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008). [CrossRef]
  21. T. Søndergaard, V. Siahpoush, and J. Jung, “Coupling light into and out from the surface plasmon polaritons of a nanometer-thin metal film with a metal nanostrip,” Phys. Rev. B 86, 085455 (2012). [CrossRef]
  22. A. E. Siegmann, “Lasers without photons—or should it be lasers with too many photons?” Appl. Phys. B 60, 247–257 (1995). [CrossRef]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  24. C. Fisker and T. G. Pedersen, “Opimization of imprintable nanostructured a-si solar cells: FDTD study,” Opt. Express 21, A208–A220 (2013). [CrossRef]
  25. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  26. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: excitation and characterization,” Appl. Phys. Lett. 92, 011124 (2008). [CrossRef]
  27. J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010). [CrossRef]
  28. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79, 035401 (2009). [CrossRef]
  29. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20, 13311–13319 (2012). [CrossRef]
  30. http://refractiveindex.info/legacy/?group=CRYSTALS&material=a-Si (downloaded July3, 2014).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited