OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2061–2067

Phase knob for switching steady-state behaviors from bistability to multistability via spontaneously generated coherence

Zhonghu Zhu, Ai-Xi Chen, Wen-Xing Yang, and Ray-Kuang Lee  »View Author Affiliations

JOSA B, Vol. 31, Issue 9, pp. 2061-2067 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (435 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We conducted a theoretical investigation of the optical steady-state behavior in N four-level Y-type atoms driven coherently by a probe laser and a single elliptically polarized field (EPF) by means of a unidirectional ring cavity. It was found that the optical bistability can be observed for a wide regime of frequency detuning of the probe field, intensity of the EPF, and the atomic cooperation parameter. Interestingly, in principle the optical steady-state behavior can be switched from optical bistability to multistability or vice versa by adjusting the phase difference between two components of the polarized electric field of the EPF if the perfect spontaneously generated coherence of atoms is included. Our results illustrate the potential to utilize EPF for all-optical switching in atomic systems through the phase control, as well as provide guidance in the design for possible experimental implementations.

© 2014 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.1450) Nonlinear optics : Bistability

ToC Category:
Quantum Optics

Original Manuscript: May 14, 2014
Revised Manuscript: July 8, 2014
Manuscript Accepted: July 8, 2014
Published: August 6, 2014

Zhonghu Zhu, Ai-Xi Chen, Wen-Xing Yang, and Ray-Kuang Lee, "Phase knob for switching steady-state behaviors from bistability to multistability via spontaneously generated coherence," J. Opt. Soc. Am. B 31, 2061-2067 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Peng and G. Li, Introduction to Modern Quantum Optics (World Scientific, 1998).
  2. N. A. Ansari, J. Gea-Banacloche, and M. S. Zubairy, “Phase-sensitive amplification in a three-level atomic system,” Phys. Rev. A 41, 5179 (1990). [CrossRef]
  3. S. Y. Zhu, H. Chen, and H. Huang, “Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure,” Phys. Rev. Lett. 79, 205 (1997). [CrossRef]
  4. M. A. G. Martinez, P. R. Herezfeld, C. Samuels, L. M. Narducci, and C. H. Keitel, “Quantum interference effects in spontaneous atomic emission: dependence of the resonance fluorescence spectrum on the phase of the driving field,” Phys. Rev. A 55, 4483 (1997). [CrossRef]
  5. E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998). [CrossRef]
  6. S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a Λ system,” Phys. Rev. A 57, 4014 (1998). [CrossRef]
  7. P. Zhou and S. Swain, “Phase-dependent spectra in a driven two-level atom,” Phys. Rev. Lett. 82, 2500 (1999). [CrossRef]
  8. F. Ghafoor, S. Y. Zhu, and M. S. Zubairy, “Amplitude and phase control of spontaneous emission,” Phys. Rev. A 62, 013811 (2000). [CrossRef]
  9. J. Evers, D. Bullock, and C. H. Keitel, “Dark state suppression and narrow fluorescent feature in a laser-driven Λ atom,” Opt. Commun. 209, 173–179 (2002). [CrossRef]
  10. X.-M. Hu and J.-S. Peng, “Quantum interference from spontaneous decay in Lamba systems: realization in the dressed-state picture,” J. Phys. B 33, 921–931 (2000). [CrossRef]
  11. J. H. Wu and J. Y. Gao, “Phase control of light amplification without inversion in a Λ system with spontaneously generated coherence,” Phys. Rev. A 65, 063807 (2002). [CrossRef]
  12. Y. Bai, H. Guo, H. Sun, D. Han, C. Liu, and X. Chen, “Effects of spontaneously generated coherence on the conditions for exhibiting lasing without inversion in a V system,” Phys. Rev. A 69, 043814 (2004). [CrossRef]
  13. J. Javanainen, “Effect of state superpositions created by spontaneous emission on laser-driven transitions,” Europhys. Lett. 17, 407 (1992). [CrossRef]
  14. M. O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360 (1992). [CrossRef]
  15. K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596 (1991). [CrossRef]
  16. S. E. Harris, “Normal modes for electromagnetically induced transparency,” Phys. Rev. Lett. 72, 52 (1994). [CrossRef]
  17. D. Cheng, C. Liu, and S. Gong, “Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system,” Phys. Lett. A 332, 244–249 (2004). [CrossRef]
  18. A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on optical bistability in three-level Λ-type atomic system,” Phys. Lett. A 315, 203–207 (2003). [CrossRef]
  19. C. Liu, S. Gong, X. Fan, and Z. Xu, “Phase control of spontaneously generated coherence induced bistability,” Opt. Commun. 239, 383–388 (2004). [CrossRef]
  20. S. Gong, S. Du, Z. Xu, and S. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996). [CrossRef]
  21. X. M. Hu and Z. Z. Xu, “Phase control of amplitude-fluctuation-induced bistability,” J. Opt. B Quant. Semiclass. Opt. 3, 35–38 (2001). [CrossRef]
  22. J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006). [CrossRef]
  23. A. Joshi, W. Yang, and M. Xiao, “Effect of spontaneously generated coherence on the dynamics of multi-level atomic systems,” Phys. Lett. A 325, 30–36 (2004). [CrossRef]
  24. A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003). [CrossRef]
  25. X.-Y. Lü, J.-H. Li, J.-B. Liu, and J.-M. Luo, “Optical bistability via quantum interference in a four-level atomic medium,” J. Phys. B 39, 5161–5171 (2006).
  26. M. Sahrai, S. H. Asadpour, H. Mahrami, and R. Sadighi-Bonabi, “Controlling the optical bistability via quantum interference in a four-level N-type atomic system,” J. Lumin. 131, 1682–1686 (2011). [CrossRef]
  27. Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004). [CrossRef]
  28. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29, 2294–2296 (2004). [CrossRef]
  29. Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004). [CrossRef]
  30. M. Shapiro and P. Brumer, “Coherent control of molecular dynamics,” Rep. Prog. Phys. 66, 859 (2003). [CrossRef]
  31. J. F. Dynes and E. Paspalakis, “Phase control of electron population, absorption, and dispersion properties of a semiconductor quantum well,” Phys. Rev. B 73, 233305 (2006). [CrossRef]
  32. U. Khadka, Y. P. Zhang, and M. Xiao, “Control of multitransparency windows via dark-state phase manipulation,” Phys. Rev. A 81, 023830 (2010). [CrossRef]
  33. L. A. Lugiato, “II theory of optical bistability,” Prog. Opt. 21, 69–216 (1984). [CrossRef]
  34. D. Steck, http://steck.us/alkalidata .
  35. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004). [CrossRef]
  36. Y. Wu, “Simple algebraic method to solve a coupled-channel cavity QED model,” Phys. Rev. A 54, 4534–4543 (1996). [CrossRef]
  37. Y. Wu and X. Yang, “Effective two-level model for a three-level atom in the Ξ configuration,” Phys. Rev. A 56, 2443–2446 (1997). [CrossRef]
  38. W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008). [CrossRef]
  39. W. X. Yang, J. M. Hou, Y. Y. Lin, and R. K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009). [CrossRef]
  40. W. X. Yang, A. X. Chen, R. K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011). [CrossRef]
  41. A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003). [CrossRef]
  42. A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003). [CrossRef]
  43. Z. P. Wang and H. Fan, “Phase-dependent optical bistability and multistability in a semiconductor quantum well system,” J. Lumin. 130, 2084–2088 (2010). [CrossRef]
  44. Z. Wang, A. X. Chen, Y. Bai, W. X. Yang, and R. K. Lee, “Coherent control of optical bistability in an open Λ-type three-level atomic system,” J. Opt. Soc. Am. B 29, 2891–2896 (2012). [CrossRef]
  45. S. H. Asadpour, M. Jaberi, and H. R. Soleimani, “Phase control of optical bistability and multistability via spin coherence in a quantum well waveguide,” J. Opt. Soc. Am. B 30, 1815–1820 (2013). [CrossRef]
  46. Z. P. Wang and B. Yu, “Optical bistability via dual electromagnetically induced transparency in a coupled quantum-well nanostructure,” J. Appl. Phys. 113, 113101 (2013). [CrossRef]
  47. J. M. Yuan, W. K. Feng, P. Y. Li, X. Zhang, Y. Q. Zhang, H. B. Zheng, and Y. P. Zhang, “Controllable vacuum Rabi splitting and optical bistability of multi-wave-mixing signal inside a ring cavity,” Phys. Rev. A 86, 063820 (2012). [CrossRef]
  48. H. B. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008). [CrossRef]
  49. Y. P. Zhang, Z. G. Wang, Z. Q. Nie, C. B. Li, H. X. Chen, K. Q. Lu, and M. Xiao, “Four-wave mixing dipole soliton in laser-induced atomic gratings,” Phys. Rev. Lett. 106, 093904 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited