OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2077–2082

Complete polarized photons Bell-states and Greenberger–Horne–Zeilinger-states analysis assisted by atoms

Yan Xia, Yi-Hao Kang, and Pei-Min Lu  »View Author Affiliations


JOSA B, Vol. 31, Issue 9, pp. 2077-2082 (2014)
http://dx.doi.org/10.1364/JOSAB.31.002077


View Full Text Article

Enhanced HTML    Acrobat PDF (207 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an efficient protocol for complete polarized photons Bell-states and Greenberger–Horne–Zeilinger (GHZ)-states analysis assisted by atoms. With the help of assistant atoms and some simple liner optical elements, the analysis of both polarization Bell states and GHZ states can be performed completely. In our protocol, the assistant atoms are trapped in cavity quantum electronic dynamics (QED), which is feasible with current experimental technology. Moreover, the polarized photons entangled states will not be destroyed in our protocol. Therefore, our scheme might contribute to the quantum communication, quantum computation, and some other fields in quantum information processing.

© 2014 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5570) Quantum optics : Quantum detectors
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: May 14, 2014
Revised Manuscript: July 10, 2014
Manuscript Accepted: July 11, 2014
Published: August 8, 2014

Citation
Yan Xia, Yi-Hao Kang, and Pei-Min Lu, "Complete polarized photons Bell-states and Greenberger–Horne–Zeilinger-states analysis assisted by atoms," J. Opt. Soc. Am. B 31, 2077-2082 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-9-2077


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. N. Gorbachev, A. I. Trubilko, A. A. Rodichkina, and A. I. Zhiliba, “Can the states of the W-class be suitable for teleportation?” Phys. Lett. A 314, 267–271 (2003). [CrossRef]
  2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  3. X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002). [CrossRef]
  4. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005). [CrossRef]
  5. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006). [CrossRef]
  6. X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006). [CrossRef]
  7. G. Gordon and G. Rigolin, “Generalized teleportation protocol,” Phys. Rev. A 73, 042309 (2006). [CrossRef]
  8. Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388–392 (2005).
  9. B. S. Shi and A. Tomita, “Teleportation of an unknown state by W state,” Phys. Lett. A 296, 161–164 (2002). [CrossRef]
  10. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  11. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998). [CrossRef]
  12. E. Jung, M. R. Hwang, Y. H. Ju, M. S. Kim, S. K. Yoo, H. S. Kim, and D. Park, “Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008). [CrossRef]
  13. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  14. D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell's theorem,” in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989), p. 69.
  15. J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).
  16. L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999). [CrossRef]
  17. J. Calsamiglia, “Generalized measurements by linear elements,” Phys. Rev. A 65, 030301(R) (2002). [CrossRef]
  18. N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999). [CrossRef]
  19. R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communications: quantum teleportation across the Danube,” Nature 430, 849 (2004). [CrossRef]
  20. J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation with a three-Bell-state analyzer,” Phys. Rev. Lett. 96, 130502 (2006). [CrossRef]
  21. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996). [CrossRef]
  22. J. W. Pan and A. Zeilinger, “Greenberger-Horne-Zeilinger-state analyzer,” Phys. Rev. A 57, 2208–2211 (1998). [CrossRef]
  23. P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997). [CrossRef]
  24. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005). [CrossRef]
  25. M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005). [CrossRef]
  26. G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009). [CrossRef]
  27. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005). [CrossRef]
  28. Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010). [CrossRef]
  29. P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998). [CrossRef]
  30. S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003). [CrossRef]
  31. T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305(R) (2007). [CrossRef]
  32. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006). [CrossRef]
  33. M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007). [CrossRef]
  34. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
  35. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). [CrossRef]
  36. X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007). [CrossRef]
  37. X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled,” Phys. Rev. A 74, 044305 (2006). [CrossRef]
  38. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008). [CrossRef]
  39. M. Eibl, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004). [CrossRef]
  40. J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007). [CrossRef]
  41. Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007). [CrossRef]
  42. J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008). [CrossRef]
  43. Z. J. Deng, X. L. Zhang, H. Wei, K. L. Gao, and M. Feng, “Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference,” Phys. Rev. A 76, 044305 (2007). [CrossRef]
  44. W. Xiong and L. Ye, “Optimal real state quantum cloning machine in cavity quantum electrodynamics,” J. Opt. Soc. Am. B 28, 2260–2264 (2011). [CrossRef]
  45. B. L. Fang, T. Wu, and L. Ye, “Realization of a general quantum cloning machine via cavity-assisted interaction,” Europhys. Lett. 97, 60002 (2012). [CrossRef]
  46. Y. Zhen, Z. W. Hai, H. Juan, and Y. Liu, “Scheme to implement optimal symmetric 1 → 2 universal quantum telecloning through cavity-assisted interaction,” Commun. Theor. Phys. 50, 1096–1100 (2008). [CrossRef]
  47. X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006). [CrossRef]
  48. Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004). [CrossRef]
  49. H. Goto and K. Ichimura, “Quantum trajectory simulation of controlled phase-flip gates using the vacuum Rabi splitting,” Phys. Rev. A 72, 054301 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited