OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2084–2094

Slab photonic crystals with dimer cylinder bases

Erin K. Riley and Chekesha M. Liddell Watson  »View Author Affiliations


JOSA B, Vol. 31, Issue 9, pp. 2084-2094 (2014)
http://dx.doi.org/10.1364/JOSAB.31.002084


View Full Text Article

Enhanced HTML    Acrobat PDF (6450 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photonic bandgap properties of centered rectangular dimer cylinder structures are reported. The theoretical model is inspired by a crystalline phase found for colloidal self-assembly of asymmetric dimers. The band structures, as a function of degree of lobe fusion and degree of lobe symmetry, are calculated in accordance with the tunable features resulting from seeded emulsion polymerization synthesis. The parameters are varied incrementally from single circular cross section cylinders to lobe-tangent dimer cylinders. Odd, even, and polarization-independent gaps in the guided modes are found for direct and inverted slab structures. A wide range of shape parameter combinations supported relative gap widths up to 19.1% (3–4 odd gap) and 14.6% (1–2 even gap) in direct structures having low to moderate Brillouin zone distortion from the hexagonal. Slab thickness was tuned to overlap even and odd mode gap frequency ranges, generating a 9.9% polarization-independent gap. The results are compared with those from model centered rectangular slabs having dimer particle bases that limit the slab height. Inverted slab structures yielded a large maximum 40.4% 1–2 even mode gap and for up to 25% Brillouin zone distortion still supported significant gaps (>32%).

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.5298) Materials : Photonic crystals

ToC Category:
Materials

History
Original Manuscript: May 14, 2014
Revised Manuscript: June 20, 2014
Manuscript Accepted: July 13, 2014
Published: August 12, 2014

Citation
Erin K. Riley and Chekesha M. Liddell Watson, "Slab photonic crystals with dimer cylinder bases," J. Opt. Soc. Am. B 31, 2084-2094 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-9-2084


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Noda, “Recent progresses and future prospects of two- and three-dimensional photonic crystals,” J. Lightwave Technol. 24, 4554–4567 (2006). [CrossRef]
  2. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999). [CrossRef]
  3. S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5  μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85, 6110–6112 (2004). [CrossRef]
  4. F. Wen, S. David, X. Checoury, M. El Kurdi, and P. Boucaud, “Two-dimensional photonic crystals with large complete photonic bandgaps in both TE- and TM-polarizations,” Opt. Express 16, 12278–12289 (2008). [CrossRef]
  5. R. Gajić, D. Jovanović, K. Hingerl, R. Meisels, and F. Kuchar, “2D photonic crystals on the Archimedean lattices [tribute to Johannes Kepler (1571–1630)],” Opt. Mater. 30, 1065–1069 (2008). [CrossRef]
  6. Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001). [CrossRef]
  7. S.-I. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic bandgap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87, 061107 (2005). [CrossRef]
  8. H. Men, N. C. Nguyen, R. M. Freund, K. M. Lim, P. A. Parrilo, and J. Peraire, “Design of photonic crystals with multiple and combined bandgaps,” Phys. Rev. E 83, 046703 (2011). [CrossRef]
  9. M. Hase, M. Egashira, N. Shinya, H. Miyazaki, K. M. Kojima, and S.-I. Uchida, “Optical transmission spectra of two-dimensional quasi-periodic photonic crystals based on Penrose-tiling and octagonal tiling systems,” J. Alloys Compd. 342, 455–459 (2002). [CrossRef]
  10. Z.-Y. Li, J. Wang, and B.-Y. Gu, “Creation of partial bandgaps in anisotropic photonic-bandgap structures,” Phys. Rev. B 58, 3721–3729 (1998). [CrossRef]
  11. L. F. Marsal, T. Trifonov, A. Rodríguez, J. Pallares, and R. Alcubilla, “Larger absolute photonic bandgap in two-dimensional air-silicon structures,” Physica E 16, 580–585 (2003). [CrossRef]
  12. R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic bandgap in two-dimensional photonic crystals,” J. Appl. Phys. 90, 4307–4313 (2001). [CrossRef]
  13. M. D. Weed, H. P. Seigneur, and W. V. Schoenfeld, “Optimization of complete bandgaps for photonic crystal slabs through use of symmetry breaking hole shapes,” Proc. SPIE 7223, 72230Q (2009). [CrossRef]
  14. E. K. Riley, E. Y. Fung, and C. M. Watson, “Buckled colloidal crystals with nonspherical bases for two-dimensional slab photonic bandgaps,” J. Appl. Phys. 111, 093504 (2012). [CrossRef]
  15. K. P. Herlihy, J. Nunes, and J. M. DeSimone, “Electrically driven alignment and crystallization of unique anisotropic polymer particles,” Langmuir 24, 8421–8426 (2008). [CrossRef]
  16. P. Panda, K. P. Yuet, T. A. Hatton, and P. S. Doyle, “Tuning curvature in flow lithography: a new class of concave/convex particles,” Langmuir 25, 5986–5992 (2009). [CrossRef]
  17. S.-M. Yang, S.-H. Kim, J.-M. Lim, and G.-R. Yi, “Synthesis and assembly of structured colloidal particles,” J. Mater. Chem. 18, 2177–2190 (2008). [CrossRef]
  18. E. Y. K. Fung, K. Muangnapoh, and C. M. L. Watson, “Anisotropic photonic crystal building blocks: colloids tuned from mushroom caps to dimers,” J. Mater. Chem. 22, 10507–10513 (2012). [CrossRef]
  19. J. A. Champion, Y. K. Katare, and S. Mitragotri, “Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers,” J. Controlled Release 121, 3–9 (2007). [CrossRef]
  20. Y. Yin and Y. Xia, “Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures,” Adv. Mater. 13, 267–271 (2001). [CrossRef]
  21. A. Mohraz and M. J. Solomon, “Direct visualization of colloidal rod assembly by confocal microscopy,” Langmuir 21, 5298–5306 (2005). [CrossRef]
  22. G.-R. Yi, V. N. Manoharan, E. Michel, M. T. Elsesser, S.-M. Yang, and D. J. Pine, “Colloidal clusters of silica or polymer microspheres,” Adv. Mater. 16, 1204–1208 (2004). [CrossRef]
  23. I. D. Hosein and C. M. Liddell, “Convectively assembled asymmetric dimer-based colloidal crystals,” Langmuir 23, 10479–10485 (2007). [CrossRef]
  24. S. H. Lee, E. Y. Fung, E. K. Riley, and C. M. Liddell, “Asymmetric colloidal dimers under quasi-2D confinement,” Langmuir 25, 7193–7195 (2009). [CrossRef]
  25. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  26. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed (Princeton University, 2008).
  27. K. Ohlinger, Y. Lin, and J. S. Qualls, “Maximum and overlapped photonic bandgaps in both transverse electric- and transverse magnetic-polarizations in two-dimensional photonic crystals with low symmetry,” J. Appl. Phys. 106, 063520 (2009). [CrossRef]
  28. C. G. Bostan and R. M. de Ridder, “Design of photonic crystal slab structures with absolute gaps in guided modes,” J. Optoelectron. Adv. Mater. 4, 921–928 (2002).
  29. C. W. Neff, T. Yamashita, and C. J. Summers, “Observation of Brillouin zone folding in photonic crystal slab waveguides possessing a superlattice pattern,” Appl. Phys. Lett. 90, 021102 (2007). [CrossRef]
  30. A. Yethiraj, “Tunable colloids: control of colloidal phase transitions with tunable interactions,” Soft Matter 3, 1099–1115 (2007). [CrossRef]
  31. T. Gong and D. W. M. Marr, “Electrically switchable colloidal ordering in confined geometries,” Langmuir 17, 2301–2304 (2001). [CrossRef]
  32. X. Ye and L. Qi, “Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: controllable fabrication, assembly, and applications,” Nano Today 6(6), 608–631 (2011). [CrossRef]
  33. J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, “Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials,” J. Am. Chem. Soc. 127, 10096–10100 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited