OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2095–2103

Nonlinear interaction of two trapped-mode resonances in a bilayer fish-scale metamaterial

Vladimir R. Tuz, Denis V. Novitsky, Pavel L. Mladyonov, Sergey L. Prosvirnin, and Andrey V. Novitsky  »View Author Affiliations

JOSA B, Vol. 31, Issue 9, pp. 2095-2103 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a bistable light transmission through a bilayer “fish-scale” (meander-line) metamaterial. It is demonstrated that an all-optical switching may be achieved that is nearly the frequency of the high-quality-factor Fano-shaped trapped-mode resonance excitation. The nonlinear interaction of two closely spaced trapped-mode resonances in the bilayer structure composed with a Kerr-type nonlinear dielectric slab is analyzed in both frequency and time domains. It is demonstrated that these two resonances react differently on the applied intense light, which leads to destination of a multistable transmission.

© 2014 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.1150) Optical devices : All-optical devices
(230.4320) Optical devices : Nonlinear optical devices
(160.3918) Materials : Metamaterials

ToC Category:
Optical Devices

Original Manuscript: March 3, 2014
Revised Manuscript: June 1, 2014
Manuscript Accepted: June 6, 2014
Published: August 13, 2014

Vladimir R. Tuz, Denis V. Novitsky, Pavel L. Mladyonov, Sergey L. Prosvirnin, and Andrey V. Novitsky, "Nonlinear interaction of two trapped-mode resonances in a bilayer fish-scale metamaterial," J. Opt. Soc. Am. B 31, 2095-2103 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. S. Kivshar, “Nonlinear optics: the next decade,” Opt. Express 16, 22126–22128 (2008). [CrossRef]
  2. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonlinear properties of split-ring resonators,” Opt. Express 16, 16058–16063 (2008). [CrossRef]
  3. I. V. Shadrivov, A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, “Tunable transmission and harmonic generation in nonlinear metamaterials,” Appl. Phys. Lett. 93, 161903 (2008). [CrossRef]
  4. E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New J. Phys. 12, 093010 (2010). [CrossRef]
  5. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009). [CrossRef]
  6. M. Kitano, Y. Tamayama, and T. Nakanishi, “Coupled-resonator-based metamaterials,” IEICE Electron. Express 9, 512012 (2012). [CrossRef]
  7. S. Prosvirnin and S. Zouhdi, “Resonances of closed modes in thin arrays of complex particles,” in Advances in Electromagnetics of Complex Media and Metamaterials, S. Zouhdi and M. Arsalane, eds. (Kluwer, 2003), pp. 281–290.
  8. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007). [CrossRef]
  9. V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Trapping of light by metal arrays,” J. Opt. 12, 045102 (2010). [CrossRef]
  10. Z. L. Sámson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010). [CrossRef]
  11. V. R. Tuz, S. L. Prosvirnin, and L. A. Kochetova, “Optical bistability involving planar metamaterials with broken structural symmetry,” Phys. Rev. B 82, 233402 (2010). [CrossRef]
  12. V. R. Tuz and S. L. Prosvirnin, “All-optical switching in planar metamaterial with high structural symmetry,” Eur. Phys. J. Appl. Phys. 56, 30401 (2011). [CrossRef]
  13. V. R. Tuz, V. S. Butylkin, and S. L. Prosvirnin, “Enhancement of absorption bistability by trapping-light planar metamaterial,” J. Opt. 14, 045102 (2012). [CrossRef]
  14. V. Dmitriev, V. Tuz, S. Prosvirnin, and M. N. Kawakatsu, “Electromagnetic controllable surfaces based on trapped-mode effect,” Adv. Electromagn. 1, 89–95 (2012). [CrossRef]
  15. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E 72, 056613 (2005). [CrossRef]
  16. X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, and W. Zhang, “Bilayer-fish-scale ultrabroad terahertz bandpass filter,” Opt. Lett. 37, 906–908 (2012). [CrossRef]
  17. H. J. Rance, T. J. Constant, A. P. Hibbins, and J. R. Sambles, “Surface waves at microwave frequencies excited on a zigzag metasurface,” Phys. Rev. B 86, 125144 (2012). [CrossRef]
  18. S. L. Prosvirnin, S. A. Tretyakov, and P. L. Mladyonov, “Electromagnetic wave diffraction by planar periodic gratings of wavy metal strips,” J. Electromagn. Waves Appl. 16, 421–435 (2002). [CrossRef]
  19. P. L. Mladyonov and S. L. Prosvirnin, “Wave diffraction by double-periodic gratings of continuous curvilinear metal strips placed on both sides of a dielectric layer,” Radio Phys. Radio Astron. 1, 309–320 (2010).
  20. M. N. Kawakatsu, V. A. Dmitriev, and S. L. Prosvirnin, “Microwave frequency selective surfaces with high Q-factor resonance and polarization insensitivity,” J. Electromagn. Waves Appl. 24, 261–270 (2010). [CrossRef]
  21. P. Mladenov, S. Prosvirnin, S. Tretyakov, and S. Zouhdi, “Planar arrays of wavy microstrip lines as thin resonant magnetic walls,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2003), Vol. 2, pp. 1103–1106.
  22. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theor. Tech. 47, 2059–2074 (1999). [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).
  24. V. V. Yatsenko, S. I. Maslovski, S. A. Tretyakov, S. L. Prosvirnin, and S. Zouhdi, “Plane-wave reflection from double arrays of small magnetoelectric scatterers,” IEEE Trans. Antennas Propag. 51, 2–11 (2003). [CrossRef]
  25. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  26. A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010). [CrossRef]
  27. A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: microscopic Lorentz-theory approach,” Phys. Rev. B 86, 075138 (2012). [CrossRef]
  28. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  29. S. C. H. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  30. A. A. Zharov, R. E. Noskov, and M. V. Tsarev, “Plasmon-induced terahertz radiation generation due to symmetry breaking in a nonlinear metallic nanodimer,” J. Appl. Phys. 106, 073104 (2009). [CrossRef]
  31. N. Lapshina, R. Noskov, and Yu. Kivshar, “Nanoradar based on nonlinear dimer nanoantenna,” Opt. Lett. 37, 3921–3923 (2012). [CrossRef]
  32. N. S. Lapshina, R. E. Noskov, and Yu. S. Kivshar, “Nonlinear nanoantenna with self-tunable scattering pattern,” JETP Lett. 96, 759–764 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited