OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2104–2108

Nonreciprocal guided modes in photonic crystals of magnetic garnet particles with a planar defect

Aristi Christofi and Nikolaos Stefanou  »View Author Affiliations


JOSA B, Vol. 31, Issue 9, pp. 2104-2108 (2014)
http://dx.doi.org/10.1364/JOSAB.31.002104


View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that a planar defect in the stacking sequence of an all-dielectric photonic crystal of garnet spheres strongly supports localized optical guided modes, which originate from Mie resonances of the individual spheres. If the defect breaks space-inversion symmetry and the garnet particles are magnetized inplane, nonreciprocal and lossless transport of light on the defect plane, expected on the basis of group theory in the Voigt–Cotto–Mouton configuration, is demonstrated in ultrathin films of the defect crystal by means of full electrodynamic calculations using the layer-multiple-scattering method properly extended to photonic crystals of gyrotropic spheres.

© 2014 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(290.4210) Scattering : Multiple scattering
(310.2790) Thin films : Guided waves
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Materials

History
Original Manuscript: May 30, 2014
Revised Manuscript: June 26, 2014
Manuscript Accepted: July 14, 2014
Published: August 13, 2014

Citation
Aristi Christofi and Nikolaos Stefanou, "Nonreciprocal guided modes in photonic crystals of magnetic garnet particles with a planar defect," J. Opt. Soc. Am. B 31, 2104-2108 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-9-2104


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001). [CrossRef]
  2. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008). [CrossRef]
  3. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008). [CrossRef]
  4. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008). [CrossRef]
  5. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009). [CrossRef]
  6. S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012). [CrossRef]
  7. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008). [CrossRef]
  8. V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, “Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field,” Phys. Rev. B 86, 045403 (2012). [CrossRef]
  9. A. Christofi and N. Stefanou, “Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres,” Phys. Rev. B 88, 125133 (2013). [CrossRef]
  10. A. Christofi, C. Tserkezis, and N. Stefanou, “Multiple scattering calculations for nonreciprocal planar magnetoplasmonic nanostructures,” J. Quant. Spectrosc. Radiat. Transfer 146, 34–40 (2014). [CrossRef]
  11. B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett. 37, 1895–1897 (2012). [CrossRef]
  12. P. Kwiecien, V. Kuzmiak, I. Richter, and J. Ctyroky, “Properties of one-way magnetooptic nanostructures in THz range,” in Proceedings of Progress in Electromagnetics Research Symposium (PIERS), Stockholm, Sweden, 2013, pp. 730–735.
  13. L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B 30, 3277 (1984). [CrossRef]
  14. S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express 17, 9276–9281 (2009). [CrossRef]
  15. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010). [CrossRef]
  16. K. Fang, Z. Yu, V. Liu, and S. Fan, “Ultracompact nonreciprocal optical isolator based on guided resonance in a magneto-optical photonic crystal slab,” Opt. Lett. 36, 4254–4256 (2011). [CrossRef]
  17. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998). [CrossRef]
  18. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000). [CrossRef]
  19. A. Christofi and N. Stefanou, “Layer multiple scattering calculations for nonreciprocal photonic structures,” Int. J. Mod. Phys. B 28, 1441012 (2014). [CrossRef]
  20. G. W. Ford and S. A. Werner, “Scattering and absorption of electromagnetic waves by a gyrotropic sphere,” Phys. Rev. B 18, 6752 (1978). [CrossRef]
  21. Z. Lin and S. T. Chui, “Electromagnetic scattering by optically anisotropic magnetic particle,” Phys. Rev. E 69, 056614 (2004). [CrossRef]
  22. J. L. W. Li and W. L. Ong, “A new solution for characterizing electromagnetic scattering by a gyroelectric sphere,” IEEE Trans. Antennas Propag. 59, 3370–3378 (2011). [CrossRef]
  23. J. L. W. Li, W. L. Ong, and K. H. R. Zheng, “Anisotropic scattering effects of a gyrotropic sphere characterized using the T-matrix method,” Phys. Rev. E 85, 036601 (2012). [CrossRef]
  24. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge, 2002).
  25. T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and its Applications in Physics (Springer, 1990).
  26. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815 (2011). [CrossRef]
  27. A. Christofi, N. Stefanou, and N. Papanikolaou, “Periodic structures of magnetic garnet particles for strong Faraday rotation enhancement,” Phys. Rev. B 89, 214410 (2014). [CrossRef]
  28. V. Karathanos, A. Modinos, and N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited