OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2109–2115

Mixed-gap vector solitons in parity-time-symmetric mixed linear–nonlinear optical lattices

Xing Zhu, Pu Cao, Liyan Song, Yingji He, and Huagang Li  »View Author Affiliations

JOSA B, Vol. 31, Issue 9, pp. 2109-2115 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1210 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the existence and stability of mixed-gap vector solitons in parity-time (PT)-symmetric mixed linear–nonlinear optical lattices. The first component is single-peaked, and the propagation constant is in the semi-infinite gap. The second component is the out-of-phase dipole mode; its propagation constant belongs to the first finite gap. The imaginary part and the depth of the PT-symmetric nonlinear optical lattice will significantly affect the existence and stability domains of these vector solitons. The propagation constant of the first component can also influence the existence and stability of the vector solitons. Finally, we also study the effect of the PT-symmetric linear optical lattice on the vector solitons’ stability.

© 2014 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: March 3, 2014
Revised Manuscript: June 18, 2014
Manuscript Accepted: July 23, 2014
Published: August 15, 2014

Xing Zhu, Pu Cao, Liyan Song, Yingji He, and Huagang Li, "Mixed-gap vector solitons in parity-time-symmetric mixed linear–nonlinear optical lattices," J. Opt. Soc. Am. B 31, 2109-2115 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. N. Christodoulides and R. I. Joseph, “Vector solitons in birefringent nonlinear dispersive media,” Opt. Lett. 13, 53–55 (1988). [CrossRef]
  2. O. Cohen, T. Schwartz, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Multiband vector lattice solitons,” Phys. Rev. Lett. 91, 113901 (2003). [CrossRef]
  3. A. A. Sukhorukov and Y. S. Kivshar, “Multigap discrete vector solitons,” Phys. Rev. Lett. 91, 113902 (2003). [CrossRef]
  4. Y. Kou, F. Ye, and X. Chen, “Multiband vector plasmonic lattice solitons,” Opt. Lett. 38, 1271–1273 (2013). [CrossRef]
  5. Y. V. Kartashov, F. Ye, and L. Torner, “Vector mixed-gap surface solitons,” Opt. Express 14, 4808–4814 (2006). [CrossRef]
  6. A. S. Desyatnikov and Y. S. Kivshar, “Necklace-ring vector solitons,” Phys. Rev. Lett. 87, 033901 (2001). [CrossRef]
  7. G. D. Montesinos, V. M. Pérez-García, and H. Michinel, “Stabilized two-dimensional vector solitons,” Phys. Rev. Lett. 92, 133901 (2004). [CrossRef]
  8. Y. V. Kartashov, L. Torner, V. A. Vysloukh, and D. Mihalache, “Multipole vector solitons in nonlocal nonlinear media,” Opt. Lett. 31, 1483–1485 (2006). [CrossRef]
  9. Z. Chen, A. Bezryadina, I. Makasyuk, and J. Yang, “Observation of two-dimensional lattice vector solitons,” Opt. Lett. 29, 1656–1658 (2004). [CrossRef]
  10. Y. V. Izdebskaya, J. Rebling, A. S. Desyatnikov, and Y. S. Kivshar, “Observation of vector solitons with hidden vorticity,” Opt. Lett. 37, 767–769 (2012). [CrossRef]
  11. C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243–5246 (1998). [CrossRef]
  12. C. M. Bender, S. Boettcher, and P. N. Meisinger, “PT-symmetric quantum mechanics,” J. Math. Phys. 40, 2201–2229 (1999). [CrossRef]
  13. C. M. Bender, D. C. Brody, and H. F. Jones, “Complex extension of quantum mechanics,” Phys. Rev. Lett. 89, 270401 (2002). [CrossRef]
  14. R. EI-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32, 2632–2634 (2007). [CrossRef]
  15. K. G. Makris, R. EI-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100, 103904 (2008). [CrossRef]
  16. O. Bendix, R. Fleischmann, T. Kottos, and B. Shapiro, “Exponentially fragile PT symmetry in lattices with localized eigenmodes,” Phys. Rev. Lett. 103, 030402 (2009). [CrossRef]
  17. K. G. Makris, R. EI-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “PT-symmetric optical lattices,” Phys. Rev. A 81, 063807 (2010).
  18. A. E. Miroshnichenko, B. A. Malomed, and Y. S. Kivshar, “Nonlinearly PT-symmetric systems: spontaneous symmetry breaking and transmission resonances,” Phys. Rev. A 84, 012123 (2011). [CrossRef]
  19. D. A. Zezyulin and V. V. Konotop, “Nonlinear modes in finite-dimensional PT-symmetric systems,” Phys. Rev. Lett. 108, 213906 (2012). [CrossRef]
  20. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009). [CrossRef]
  21. C. E. Rüter, K. G. Makris, R. EI-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010). [CrossRef]
  22. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012). [CrossRef]
  23. C. Hang, G. Huang, and V. V. Konotop, “PT symmetry with a system of three-level atoms,” Phys. Rev. Lett. 110, 083604 (2013). [CrossRef]
  24. Z. H. Musslimani, K. G. Makris, R. EI-Ganainy, and D. N. Christodoulides, “Optical solitons in PT periodic potentials,” Phys. Rev. Lett. 100, 030402 (2008). [CrossRef]
  25. X. Zhu, H. Wang, L. Zheng, H. Li, and Y. He, “Gap solitons in parity-time complex periodic optical lattices with the real part of superlattices,” Opt. Lett. 36, 2680–2682 (2011). [CrossRef]
  26. H. Wang and J. Wang, “Defect solitons in parity-time periodic potentials,” Opt. Express 19, 4030–4035 (2011). [CrossRef]
  27. Y. He, X. Zhu, D. Mihalache, J. Liu, and Z. Chen, “Solitons in PT-symmetric optical lattices with spatially periodic modulation of nonlinearity,” Opt. Commun. 285, 3320–3324 (2012). [CrossRef]
  28. S. Hu, X. Ma, D. Lu, Y. Zheng, and W. Hu, “Defect solitons in parity-time-symmetric optical lattices with nonlocal nonlinearity,” Phys. Rev. A 85, 043826 (2012). [CrossRef]
  29. S. Nixon, L. Ge, and J. Yang, “Stability analysis for solitons in PT-symmetric optical lattices,” Phys. Rev. A 85, 023822 (2012). [CrossRef]
  30. Z. Shi, X. Jiang, X. Zhu, and H. Li, “Bright spatial solitons in defocusing Kerr media with PT-symmetric potentials,” Phys. Rev. A 84, 053855 (2011). [CrossRef]
  31. H. Li, X. Jiang, X. Zhu, and Z. Shi, “Nonlocal solitons in dual-periodic PT-symmetric optical lattices,” Phys. Rev. A 86, 023840 (2012). [CrossRef]
  32. B. Midya and R. Roychoudhury, “Nonlinear localized modes in PT-symmetric Rosen-Morse potential wells,” Phys. Rev. A 87, 045803 (2013). [CrossRef]
  33. C. Li, H. Liu, and L. Dong, “Multi-stable solitons in PT-symmetric optical lattices,” Opt. Express 20, 16823–16831 (2012).
  34. X. Zhu, H. Li, H. Wang, and Y. He, “Nonlocal multihump solitons in parity-time symmetric periodic potentials,” J. Opt. Soc. Am. B 30, 1987–1995 (2013). [CrossRef]
  35. X. Zhu, H. Wang, H. Li, W. He, and Y. He, “Two-dimensional multipeak gap solitons supported by parity-time-symmetric periodic potentials,” Opt. Lett. 38, 2723–2725 (2013). [CrossRef]
  36. S. V. Dmitriev, A. A. Sukhorukov, and Y. S. Kivshar, “Binary parity-time-symmetric nonlinear lattices with balanced gain and loss,” Opt. Lett. 35, 2976–2978 (2010). [CrossRef]
  37. R. Driben and B. A. Malomed, “Stability of solitons in parity-time-symmetric couplers,” Opt. Lett. 36, 4323–4325 (2011). [CrossRef]
  38. Y. V. Bludov, V. V. Konotop, and B. A. Malomed, “Stable dark solitons in PT-symmetric dual-core waveguides,” Phys. Rev. A 87, 013816 (2013). [CrossRef]
  39. Y. V. Kartashov, “Vector solitons in parity-time-symmetric lattices,” Opt. Lett. 38, 2600–2603 (2013). [CrossRef]
  40. F. K. Abdullaev, V. V. Konotop, M. Salerno, and A. V. Yulin, “Dissipative periodic waves, solitons, and breathers of the nonlinear Schrödinger equation with complex potentials,” Phys. Rev. E 82, 056606 (2010). [CrossRef]
  41. F. K. Abdullaev, Y. V. Kartashov, V. V. Konotop, and D. A. Zezyulin, “Solitons in PT-symmetric nonlinear lattices,” Phys. Rev. A 83, 041805 (2011). [CrossRef]
  42. Y. He, X. Zhu, D. Mihalache, J. Liu, and Z. Chen, “Lattice solitons in PT-symmetric mixed linear-nonlinear optical lattices,” Phys. Rev. A 85, 013831 (2012). [CrossRef]
  43. C. Huang, C. Li, and L. Dong, “Stabilization of multipole-mode solitons in mixed linear-nonlinear lattices with a PT symmetry,” Opt. Express 21, 3917–3925 (2013). [CrossRef]
  44. J. Xie, W. Chen, J. Lv, Z. Su, C. Yin, and Y. He, “Nonlocal defect solitons in parity-time-symmetric photonic lattices with spatially modulated nonlinearity,” J. Opt. Soc. Am. B 30, 1216–1221 (2013). [CrossRef]
  45. H. Wang, W. He, L. Zheng, X. Zhu, H. Li, and Y. He, “Defect gap solitons in real linear periodic optical lattices with parity-time-symmetric nonlinear potentials,” J. Phys. B 45, 245401 (2012).
  46. M. J. Ablowitz and Z. H. Musslimani, “Spectral renormalization method for computing self-localized solutions to nonlinear systems,” Opt. Lett. 30, 2140–2142 (2005). [CrossRef]
  47. J. Yang and T. I. Lakoba, “Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations,” Stud. Appl. Math. 118, 153–197 (2007). [CrossRef]
  48. M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, and J. H. Denschlag, “Tuning the scattering length with an optically induced Feshbach resonance,” Phys. Rev. Lett. 93, 123001 (2004). [CrossRef]
  49. S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kun, and W. Ketterle, “Observation of Feshbach resonances in a Bose-Einstein condensate,” Nature 392, 151–154 (1998). [CrossRef]
  50. J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems (SIAM, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited