OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2116–2120

Cavity-enhanced laser cooling for Yb3+-doped fluoride crystal using a low-power diode laser

Biao Zhong, Youhua Jia, Lin Chen, Yingchao Deng, Yangqin Chen, and Jianping Yin  »View Author Affiliations

JOSA B, Vol. 31, Issue 9, pp. 2116-2120 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A diode laser with a power of 178 mW is used to pump a 2.2% (wt.) Yb3+-doped YLiF4 crystal in an optical extracavity, and a resonant cavity-enhanced laser cooling for Yb3+-doped fluoride crystal is proposed and demonstrated. The pump laser enhancement factor so far obtained is up to 8.6 with the resonant cavity. Given that 82% of incident laser power is absorbed, the cooling efficiency is calculated as 1.08% and the temperature drop is 12.3 K/W. Accordingly, the combination of the diode laser—featuring low cost, long life, small weight, compact volume, and low power consumption—and the simple resonant cavity for laser cooling of solids is promising in some important applications in optical refrigeration of space sensors and detectors, etc.

© 2014 Optical Society of America

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(140.4780) Lasers and laser optics : Optical resonators
(140.6810) Lasers and laser optics : Thermal effects
(160.5690) Materials : Rare-earth-doped materials
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:

Original Manuscript: December 19, 2013
Revised Manuscript: July 6, 2014
Manuscript Accepted: July 19, 2014
Published: August 15, 2014

Biao Zhong, Youhua Jia, Lin Chen, Yingchao Deng, Yangqin Chen, and Jianping Yin, "Cavity-enhanced laser cooling for Yb3+-doped fluoride crystal using a low-power diode laser," J. Opt. Soc. Am. B 31, 2116-2120 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929). [CrossRef]
  2. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995). [CrossRef]
  3. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010). [CrossRef]
  4. S. D. Melgarrd, D. V. Seletskiy, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119  K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38, 1588–1590 (2013). [CrossRef]
  5. S. N. Andrianov and V. V. Samartsev, “Anti-Stokes regime of laser cooling of solids,” Laser Phys. 9, 1021–1025 (1999).
  6. E. K. Bashkirov, “Dynamics of phonon mode in superradiance regime of laser cooling of crystals,” Phys. Lett. A 341, 345–351 (2005). [CrossRef]
  7. S. V. Petrushkin and V. V. Samartsev, “Advances of laser refrigeration in solids,” Laser Phys. 20, 38–46 (2010). [CrossRef]
  8. J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013). [CrossRef]
  9. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009). [CrossRef]
  10. D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010). [CrossRef]
  11. G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83, 013404 (2011). [CrossRef]
  12. X. L. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006). [CrossRef]
  13. C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20, 1066–1074 (2003). [CrossRef]
  14. S. C. Rand, “Raman laser cooling of solids,” J. Lumin. 133, 10–14 (2013). [CrossRef]
  15. B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002). [CrossRef]
  16. E. S. L. Filho, G. Nemova, S. Loranger, and R. Kashyap, “Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure,” Opt. Express 21, 24711–24720 (2013). [CrossRef]
  17. B. Zhong, J. G. Yin, Y. H. Jia, L. Chen, H. Yin, and J. P. Yin, “Laser cooling of Yb3+-doped LuLiF4 cystal,” Opt. Lett. 39, 2747–2750 (2014). [CrossRef]
  18. M. P. Hehlen, “Design and fabrication of rare-earth-doped laser cooling materials,” in Optical Refrigeration, R. I. Epstein and M. Sheik-Bahae, eds. (Wiley-VCH, 2009), Chap. 2, pp. 33–74.
  19. M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE 7228, 72280E (2009). [CrossRef]
  20. M. P. Hehlen, “Crystal-field effects in fluoride crystals for optical refrigeration,” Proc. SPIE 7614, 761404 (2010). [CrossRef]
  21. J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited