OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2121–2130

Analysis of electromagnetically induced transparency-based quantum dot infrared photodetectors

Chandra Mohan Singh Negi and Jitendra Kumar  »View Author Affiliations


JOSA B, Vol. 31, Issue 9, pp. 2121-2130 (2014)
http://dx.doi.org/10.1364/JOSAB.31.002121


View Full Text Article

Enhanced HTML    Acrobat PDF (694 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A quantum dot infrared (IR) photodetector based on intraband optical transitions among the various states within the valence band by considering the principle of electromagnetically induced transparency (EIT) is proposed and theoretically investigated. Absorption spectra of the probe beam and its dependence on the control beam and IR signal under the conditions of EIT have been studied. The incident IR signal itself does not generate any photocurrent. However, profound modification of the absorption characteristics of the probe beam by incident IR signal intensity leads to photocurrent generation in the proposed photodetector. Thermal characterization of the photodetector has been carried out through the evaluation of the temperature dependence of the quantum efficiency of the device.

© 2014 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(230.5160) Optical devices : Photodetectors
(270.0270) Quantum optics : Quantum optics
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optical Devices

History
Original Manuscript: May 14, 2014
Revised Manuscript: July 3, 2014
Manuscript Accepted: July 14, 2014
Published: August 15, 2014

Citation
Chandra Mohan Singh Negi and Jitendra Kumar, "Analysis of electromagnetically induced transparency-based quantum dot infrared photodetectors," J. Opt. Soc. Am. B 31, 2121-2130 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-9-2121


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Rogalski, “Infrared detectors for the future,” Acta Physica Polonica A 116, 389–406 (2009).
  2. J. Wang, X. Chen, W. D. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, and R. Ji, “Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200  K,” Appl. Phys. Lett. 99, 113508 (2011). [CrossRef]
  3. W. D. Hu, X. S. Chen, Z. H. Ye, and W. Lu, “A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification,” Appl. Phys. Lett. 99, 091101 (2011). [CrossRef]
  4. G. A. Umana-Membreno, H. Kala, J. Antoszewski, Z. H. Ye, W. D. Hu, R. J. Ding, X. S. Chen, W. Lu, L. He, J. M. Dell, and L. Faraone, “Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe,” J. Electron. Mater. 42, 3108–3113 (2013). [CrossRef]
  5. C. Downs and T. E. Vandervelde, “Progress in infrared photodetectors since 2000,” Sensors 13, 5054–5098 (2013). [CrossRef]
  6. U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42, 8947–8951 (1990). [CrossRef]
  7. A. D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37, 1412–1419 (2001). [CrossRef]
  8. J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8–10  μm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21, 329–331 (2000).
  9. V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors,” Semicond. Sci. Technol. 19, 8–16 (2004). [CrossRef]
  10. S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78, 1023–1025 (2001). [CrossRef]
  11. V. Ryzhii, “Physical model and analysis of quantum dot infrared photodetectors with blocking layer,” J. Appl. Phys. 89, 5117–5124 (2001). [CrossRef]
  12. C. M. S. Negi, D. Kumar, S. K. Gupta, and J. Kumar, “Theoretical analysis of resonant cavity p-type quantum dot infrared photodetector,” IEEE J. Quantum Electron. 49, 839–845 (2013). [CrossRef]
  13. G. Ariyawansa, A. G. U. Perera, X. H. Su, S. Chakrabarti, and P. Bhattacharya, “Multi-color tunneling quantum dot infrared photodetectors operating at room temperature,” Infrared Phys. Technol. 50, 156–161 (2007). [CrossRef]
  14. M. Zyaei, H. R. Saghai, K. Abbasian, and A. Rostami, “Long wavelength infrared photodetector design based on electromagnetically induced transparency,” Opt. Commun. 281, 3739–3747 (2008). [CrossRef]
  15. S. F. Yelin and P. R. Hammer, “Resonantly enhanced nonlinear optics in semiconductor quantum wells,” Phys. Rev. A 66, 013803 (2002). [CrossRef]
  16. S. H. Asadpour, A. Soltani, A. E. Majd, and H. R. Soleimani, “Far infrared photo detector based on electromagnetically induced transparency,” Int. J. Mod. Phys. B 27, 1350004 (2013). [CrossRef]
  17. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  18. S. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998). [CrossRef]
  19. W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003). [CrossRef]
  20. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  21. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  22. D. Sun and P.-C. Ku, “Slow light using p-doped semiconductor heterostructures for high-bandwidth nonlinear signal processing,” J. Lightwave Technol. 26, 3811–3817 (2008). [CrossRef]
  23. D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003). [CrossRef]
  24. M. Zyaei, A. Rostami, H. H. Khanmohamadi, and H. R. Saghai, “Room temperature terahertz photodetection in atomic and quantum well realized structures,” Prog. Electromagn. Res. B 28, 163–182 (2011). [CrossRef]
  25. A. Rostami, H. Rasooli, and H. Baghban, Terahertz Technology: Fundamentals and Applications, Vol. 77 of Lecture Notes in Electrical Engineering (Springer-Verlag, 2011).
  26. P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001). [CrossRef]
  27. J. R. Hoff and M. Razeghi, “Effect of the spin split-off band on optical absorption in p-type Ga1-xInxAsyP1-y quantum-well infrared detectors,” Phys. Rev. B 54, 10773–10783 (1996). [CrossRef]
  28. J. M. Luttinger and W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev. 97, 869–883 (1955). [CrossRef]
  29. J. Kumar, S. Kapoor, S. K. Gupta, and P. K. Sen, “Theoretical investigation of the effect of asymmetry on optical anisotropy and electronic structure of Stranski-Krastanov quantum dots,” Phys. Rev. B 74, 115326 (2006). [CrossRef]
  30. G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, 1974).
  31. S. K. Gupta, S. Kapoor, J. Kumar, and P. K. Sen, “Strain induced effects on optical properties of magnetized Stranski-Krastanov quantum dots,” Nanotechnology 18, 325402 (2007). [CrossRef]
  32. C. M. S. Negi, S. K. Gupta, D. Kumar, and J. Kumar, “Nonlinear optical absorption and refraction in a strained anisotropic multi-level quantum dot system,” Superlattices Microstruct. 60, 462–474 (2013). [CrossRef]
  33. Y.-F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103, 241115 (2013). [CrossRef]
  34. P. Martyniuk, S. Krishna, and A. Rogalski, “Assessment of quantum dot infrared photodetectors for high temperature operation,” J. Appl. Phys. 104, 034314 (2008). [CrossRef]
  35. V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristics,” Semicond. Sci. Technol. 16, 331–338 (2001). [CrossRef]
  36. S. M. Sze and K. Ng. Kwok, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2007).
  37. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001). [CrossRef]
  38. S. Adachi, Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley, 1992).
  39. M. Oloumi and C. C. Matthai, “Band offsets at InAs/GaAs interfaces,” J. Phys. Condens. Matter 1, SB211–SB212 (1989). [CrossRef]
  40. S. Kapoor, J. Kumar, and P. K. Sen, “Magneto-optical analysis of anisotropic CdZnSe quantum dots,” Physica E 42, 2380–2385 (2010). [CrossRef]
  41. S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crepin, J.-M. Ortega, and J.-M. Gerard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited