OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2131–2135

Observation of coherence oscillations of single ensemble excitations in methanol

Seth Meiselman, Offir Cohen, Matthew F. DeCamp, and Virginia O. Lorenz  »View Author Affiliations


JOSA B, Vol. 31, Issue 9, pp. 2131-2135 (2014)
http://dx.doi.org/10.1364/JOSAB.31.002131


View Full Text Article

Enhanced HTML    Acrobat PDF (306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate coherence measurements of single-photon-level collective excitations of vibrational states using transient coherent spontaneous Raman scattering in liquid methanol. We observe the decay of the 1033cm1 mode and coherence oscillations due to simultaneous excitation of the 2834 and 2944cm1 modes. The coherence life-times and oscillation frequencies agree with frequency-domain line-shape measurements and femtosecond coherent anti-Stokes Raman scattering measurements. The demonstrated technique is complementary to and, in some cases, simpler than traditional stimulated spectroscopy techniques in that it does not require more than one laser and is free of nonresonant background.

© 2014 Optical Society of America

OCIS Codes
(300.6240) Spectroscopy : Spectroscopy, coherent transient
(300.6330) Spectroscopy : Spectroscopy, inelastic scattering including Raman
(300.6450) Spectroscopy : Spectroscopy, Raman
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Spectroscopy

History
Original Manuscript: May 22, 2014
Revised Manuscript: July 25, 2014
Manuscript Accepted: July 27, 2014
Published: August 15, 2014

Citation
Seth Meiselman, Offir Cohen, Matthew F. DeCamp, and Virginia O. Lorenz, "Observation of coherence oscillations of single ensemble excitations in methanol," J. Opt. Soc. Am. B 31, 2131-2135 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-9-2131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).
  2. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).
  3. W. Tolles, J. Nibler, J. McDonald, and A. Harvey, “A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Spectrosc. 31, 253–271 (1977). [CrossRef]
  4. Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem. 60, 277–292 (2009). [CrossRef]
  5. A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978). [CrossRef]
  6. S. Mukamel, A. Piryatinski, and V. Chernyak, “Two-dimensional Raman echoes: femtosecond view of molecular structure and vibrational coherence,” Accounts Chem. Res. 32, 145–154 (1999).
  7. S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000). [CrossRef]
  8. M. D. Fayer, Ultrafast Infrared and Raman Spectroscopy, Vol. 26 of Practical Spectroscopy (Marcel Dekker, 2001).
  9. K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6, 41–44 (2012). [CrossRef]
  10. F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B 78, 155201 (2008). [CrossRef]
  11. K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater. 19, 1289–1295 (2010). [CrossRef]
  12. L. K. Iwaki, J. C. Deàk, S. T. Reah, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: ultrafast IR-Raman spectroscopy,” in Ultrafast Infrared and Raman SpectroscopyM. D. Fayer, ed. (Marcel Dekker, 2000), pp. 541–592.
  13. L. K. Iwaki and D. D. Dlott, “Three-dimensional spectroscopy of vibrational energy relaxation in liquid methanol,” J. Phys. Chem. A 104, 9101–9112 (2000). [CrossRef]
  14. Y. Sun, R. Zheng, and Q. Shi, “Theoretical study of Raman spectra of methanol in aqueous solutions: non-coincident effect of the CO stretch,” J. Phys. Chem. B 116, 4543–4551 (2012). [CrossRef]
  15. Y. Yu, Y. Wang, K. Lin, N. Hu, X. Zhou, and S. Liu, “Complete Raman spectral assignment of methanol in the C–H stretching region,” J. Phys. Chem. A 117, 4377–4384 (2013). [CrossRef]
  16. D. Pestov, M. Zhi, Z.-E. Sariyanni, N. G. Kalugin, A. Kolomenskii, R. Murawski, Y. V. Rostovtsev, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Femtosecond CARS of methanol-water mixtures,” J. Raman Spectrosc. 37, 392–396 (2006). [CrossRef]
  17. K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High-spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387, 436–441 (2004). [CrossRef]
  18. U. Buck and F. Huisken, “Infrared spectroscopy of size-selected water and methanol clusters,” Chem. Rev. 100, 3863–3890 (2000). [CrossRef]
  19. R. Chelli, S. Ciabatti, G. Cardini, R. Righini, and P. Procacci, “Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method,” J. Chem. Phys. 111, 4218 (1999). [CrossRef]
  20. G. Garberoglio and R. Vallauri, “Instantaneous normal mode analysis of liquid methanol,” J. Chem. Phys. 115, 395 (2001). [CrossRef]
  21. P. Jedlovszky, “The local structure of various hydrogen bonded liquids: Voronoi polyhedra analysis of water, methanol and HF,” J. Chem. Phys. 113, 9113–9121 (2000). [CrossRef]
  22. U. Liddel and E. D. Becker, “Infrared spectroscopic studies of hydrogen bonding in methanol, ethanol and t-butanol,” Spectrochim. Acta 10, 70–84 (1957). [CrossRef]
  23. M. Matsumoto and K. E. Gubbins, “Hydrogen bonding in liquid methanol,” J. Chem. Phys. 93, 1981–1994 (1990). [CrossRef]
  24. H. Torii and M. Tasumi, “Local order and transition dipole coupling in liquid methanol and acetone as the origin of the Raman noncoincidence effect,” J. Chem. Phys. 99, 8459–8465 (1993). [CrossRef]
  25. K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid-air interface of methanol. Water solutions,” Chem. Phys. Lett. 213, 41–46 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited