OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2136–2141

On the transformations generated by the electromagnetic spin and orbital angular momentum operators

Ivan Fernandez-Corbaton, Xavier Zambrana-Puyalto, and Gabriel Molina-Terriza  »View Author Affiliations


JOSA B, Vol. 31, Issue 9, pp. 2136-2141 (2014)
http://dx.doi.org/10.1364/JOSAB.31.002136


View Full Text Article

Enhanced HTML    Acrobat PDF (209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a study of the properties of the transversal “spin angular momentum” and “orbital angular momentum” operators. We show that the “spin angular momentum” operators are generators of spatial translations that depend on helicity and frequency and that the “orbital angular momentum” operators generate transformations that are a sequence of this kind of translation and rotation. We give some examples of the use of these operators in light–matter interaction problems. Their relationship with the helicity operator allows us to involve electromagnetic duality symmetry in the analysis. We also find that simultaneous eigenstates of the three “spin” operators and parity define a type of standing mode that has recently been singled out for the interaction of light with chiral molecules. With respect to the relationship between “spin angular momentum,” polarization, and total angular momentum, we show that, except for the case of a single plane wave, the total angular momentum of the field is decoupled from its vectorial degrees of freedom even in the regime in which the paraxial approximation holds. Finally, we point out a relationship between the three “spin” operators and the spatial part of the Pauli–Lubanski four vector.

© 2014 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(270.0270) Quantum optics : Quantum optics
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: June 3, 2014
Revised Manuscript: July 26, 2014
Manuscript Accepted: July 27, 2014
Published: August 18, 2014

Citation
Ivan Fernandez-Corbaton, Xavier Zambrana-Puyalto, and Gabriel Molina-Terriza, "On the transformations generated by the electromagnetic spin and orbital angular momentum operators," J. Opt. Soc. Am. B 31, 2136-2141 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-9-2136


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Messiah, Quantum Mechanics (Dover, 1999).
  2. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  3. S. J. Van Enk and G. Nienhuis, “Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields,” J. Mod. Opt. 41, 963–977 (1994). [CrossRef]
  4. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  5. R. Jáuregui and S. Hacyan, “Quantum-mechanical properties of Bessel beams,” Phys. Rev. A 71, 033411 (2005). [CrossRef]
  6. S. M. Barnett, “Rotation of electromagnetic fields and the nature of optical angular momentum,” J. Mod. Opt. 57, 1339–1343 (2010). [CrossRef]
  7. K. Y. Bliokh, M. Alonso, E. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82, 063825 (2010). [CrossRef]
  8. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys. 15, 033026 (2013). [CrossRef]
  9. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms—Introduction to Quantum Electrodynamics (Wiley-Interscience, 1997).
  10. M. G. Calkin, “An invariance property of the free electromagnetic field,” Am. J. Phys. 33, 958–960 (1965). [CrossRef]
  11. D. Zwanziger, “Quantum field theory of particles with both electric and magnetic charges,” Phys. Rev. 176, 1489–1495 (1968). [CrossRef]
  12. W.-K. Tung, Group Theory in Physics (World Scientific, 1985).
  13. I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: a symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86, 042103 (2012). [CrossRef]
  14. I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Electromagnetic duality symmetry and helicity conservation for the macroscopic Maxwell’s equations,” Phys. Rev. Lett. 111, 060401 (2013). [CrossRef]
  15. X. Zambrana-Puyalto, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Dual and anti-dual modes in dielectric spheres,” Opt. Express 21, 17520–17530 (2013). [CrossRef]
  16. I. Fernandez-Corbaton and G. Molina-Terriza, “Role of duality symmetry in transformation optics,” Phys. Rev. B 88, 085111 (2013). [CrossRef]
  17. S. J. v. Enk and G. Nienhuis, “Spin and orbital angular momentum of photons,” Europhys. Lett. 25, 497–501 (1994). [CrossRef]
  18. C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, 1st ed. (Wiley, 1991), Vol. 1.
  19. J. J. Sakurai, Modern Quantum Mechanics (Revised Edition), 1st ed. (Addison Wesley, 1993).
  20. R. P. Cameron, S. M. Barnett, and A. M. Yao, “Optical helicity, optical spin and related quantities in electromagnetic theory,” New J. Phys. 14, 053050 (2012). [CrossRef]
  21. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010). [CrossRef]
  22. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002). [CrossRef]
  23. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011). [CrossRef]
  24. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Kogakusha, 1953).
  25. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  26. The shift in the integration interval due to this change is irrelevant because the argument inside the integral is 2π-periodic in the integration variable.
  27. R. Penrose and W. Rindler, Spinors and Space-Time: Spinor and Twistor Methods in Space-Time Geometry (Cambridge University, 1986), Vol. 2.
  28. K. Y. Bliokh and F. Nori, “Characterizing optical chirality,” Phys. Rev. A 83, 021803 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited