OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2163–2174

Quasi-probability distributions and decoherence of Hermite-excited squeezed thermal states

Zhen Wang, Heng-mei Li, and Hong-chun Yuan  »View Author Affiliations


JOSA B, Vol. 31, Issue 9, pp. 2163-2174 (2014)
http://dx.doi.org/10.1364/JOSAB.31.002163


View Full Text Article

Enhanced HTML    Acrobat PDF (1151 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically put forward the Hermite-excited squeezed thermal states (HESTS) by applying operator Hermite polynomials on squeezed thermal states. Starting from the normally ordered density operator of squeezed thermal states and operator Hermite polynomials, the normalization factor is obtained, which is related to the Legendre polynomials. Several phase-space distribution functions, i.e., the Q function, P function, Wigner function (WF), and R function, are analytically derived. And the non-Gaussianity and nonclassicality are mainly reflected by the negativity of non-Gaussian WF and the existence of nonclassical depth. In addition, by deriving the normally ordered density operator and WF of HESTS in the laser channel, the decoherence effect is studied and discussed. Finally, the quantity in measuring non-Gaussianity is calculated to further quantitatively measure the non-Gaussianity of the resulting states.

© 2014 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

History
Original Manuscript: March 31, 2014
Revised Manuscript: July 24, 2014
Manuscript Accepted: July 28, 2014
Published: August 26, 2014

Citation
Zhen Wang, Heng-mei Li, and Hong-chun Yuan, "Quasi-probability distributions and decoherence of Hermite-excited squeezed thermal states," J. Opt. Soc. Am. B 31, 2163-2174 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-9-2163


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Weedbrook, S. Pirandola, R. Garci-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012). [CrossRef]
  2. A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in Quantum Information (Bibliopolis, 2005).
  3. F. Dell’Anno, S. De Siena, and F. Illuminati, “Multiphoton quantum optics and quantum state engineering,” Phys. Rep. 428, 53–168 (2006). [CrossRef]
  4. M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of Gaussian quantum states,” Phys. Rev. Lett. 96, 080502 (2006). [CrossRef]
  5. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005). [CrossRef]
  6. S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto, “Efficient classical simulation of continuous variable quantum information processes,” Phys. Rev. Lett. 88, 097904 (2002). [CrossRef]
  7. S. D. Bartlett and B. C. Sanders, “Efficient classical simulation of optical quantum information circuits,” Phys. Rev. Lett. 89, 207903 (2002). [CrossRef]
  8. R. Garcia-Patron, J. Fiurášek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, “Proposal for a loophole-free Bell test using homodyne detection,” Phys. Rev. Lett. 93, 130409 (2004). [CrossRef]
  9. J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002). [CrossRef]
  10. J. Fiurášek, “Gaussian transformations and distillation of entangled Gaussian states,” Phys. Rev. Lett. 89, 137904 (2002). [CrossRef]
  11. J. Niset, J. Fiurášek, and N. J. Cerf, “No-Go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009). [CrossRef]
  12. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  13. I. L. Chuang, L. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd, “Experimental realization of a quantum algorithm,” Nature 393, 143–146 (1998). [CrossRef]
  14. G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90, 227901 (2003). [CrossRef]
  15. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  16. G. Björk, L. L. Sáchez-Soto, and J. Söerholm, “Entangled-state lithography: tailoring any pattern with a single state,” Phys. Rev. Lett. 86, 4516–4519 (2001). [CrossRef]
  17. G. S. Agarwal and K. Tara, “Nonclassical properties of states generated by the excitations on a coherent state,” Phys. Rev. A 43, 492–497 (1991). [CrossRef]
  18. A. Zavatta, S. Viciani, and M. Bellini, “Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission,” Phys. Rev. A 72, 023820 (2005). [CrossRef]
  19. A. Zavatta, V. Parigi, and M. Bellini, “Experimental nonclassicality of single-photon-added thermal light states,” Phys. Rev. A 75, 052106 (2007). [CrossRef]
  20. S. M. Barnett and D. T. Pegg, “Phase measurement by projection synthesis,” Phys. Rev. Lett. 76, 4148–4150 (1996). [CrossRef]
  21. J. A. Bergou, M. Hillery, and D. Yu, “Minimum uncertainty states for amplitude-squared squeezing: Hermite polynomial states,” Phys. Rev. A 43, 515–520 (1991). [CrossRef]
  22. H. Y. Fan and X. Ye, “Hermite polynomial states in two-mode Fock space,” Phys. Lett. A 175, 387–390 (1993). [CrossRef]
  23. W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, 2001).
  24. M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, “Distribution functions in physics: fundamentals,” Phys. Rep. 106, 121–167 (1984). [CrossRef]
  25. H. Y. Fan, “Newton–Leibniz integration for ket-bra operators in quantum mechanics (V)—Deriving normally ordered bivariate-normal-distribution form of density operators and developing their phase space formalism,” Ann. Phys. 323, 1502–1528 (2008). [CrossRef]
  26. H. Y. Fan and T. T. Wang, “New operator identities and integration formulas regarding to Hermite polynomials obtained via the operator ordering method,” Int. J. Theor. Phys. 48, 441–448 (2009). [CrossRef]
  27. A. Peres, Quantum Theory: Concepts and Methods (Kluwer, 1995).
  28. H. Y. Fan, X. G. Meng, and J. S. Wang, “New form of Legendre polynomials obtained by virtue of excited squeezed state and IWOP technique in quantum optics,” Commun. Theor. Phys. 46, 845–848 (2006). [CrossRef]
  29. R. R. Puri, Mathematical Methods of Quantum Optics (Springer-Verlag, 2001).
  30. S. Y. Lee and H. Nha, “Quantum state engineering by a coherent superposition of photon subtraction and addition,” Phys. Rev. A 82, 053812 (2010). [CrossRef]
  31. M. Ban, “Photon statistics of conditional output states of lossless beam splitter,” J. Mod. Opt. 43, 1281–1303 (1996). [CrossRef]
  32. M. Dakna, T. Anhut, T. Opatrny, L. Knoll, and D. G. Welsch, “Generating Schröinger-cat-like states by means of conditional measurements on a beam splitter,” Phys. Rev. A 55, 3184–3194 (1997). [CrossRef]
  33. A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660–662 (2004). [CrossRef]
  34. K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express 15, 3568–3574 (2007). [CrossRef]
  35. A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007). [CrossRef]
  36. V. Parigi, A. Zavatta, M. S. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007). [CrossRef]
  37. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  38. E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,” Phys. Rev. Lett. 10, 277–279 (1963). [CrossRef]
  39. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
  40. C. T. Lee, “Measure of the nonclassicality of nonclassical states,” Phys. Rev. A 44, R2775–R2777 (1991). [CrossRef]
  41. V. V. Dodonov, “Nonclassical states in quantum optics: a squeezed review of the first 75 years,” J. Opt. B 4, R1–R33 (2002). [CrossRef]
  42. C. L. Methta, “Diagonal coherent state representation of quantum operators,” Phys. Rev. Lett. 18, 752–754 (1967). [CrossRef]
  43. A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81, 299–332 (2009). [CrossRef]
  44. A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator of non-classicality,” J. Opt. B 6, 396–404 (2004). [CrossRef]
  45. T. Hiroshima, “Decoherence and entanglement in two-mode squeezed vacuum states,” Phys. Rev. A 63, 022305 (2001). [CrossRef]
  46. S. Scheel and D. G. Welsch, “Entanglement generation and degradation by passive optical devices,” Phys. Rev. A 64, 063811 (2001). [CrossRef]
  47. D. Wilson, J. Lee, and M. S. Kim, “Entanglement of a two-mode squeezed state in a phase-sensitive Gaussian environment,” J. Mod. Opt. 50, 1809–1815 (2003). [CrossRef]
  48. S. Olivares, M. G. A. Paris, and A. R. Rossi, “Optimized teleportation in Gaussian noisy channels,” Phys. Lett. A 319, 32–43 (2003). [CrossRef]
  49. C. Gardiner and P. Zoller, Quantum Noise (Springer, 2000).
  50. H. Y. Fan and L. Y. Hu, “Operator-sum representation of density operators as solution to master equations obtained via the entangled states approach,” Mod. Phys. Lett. B 22, 243–262 (2008). [CrossRef]
  51. H. Y. Fan and L. Y. Hu, “New approach for analyzing time evolution of density operator in a dissipative channel by the entangled state representation,” Opt. Commun. 281, 5571–5573 (2008). [CrossRef]
  52. H. Y. Fan and Y. Fan, “New bosonic operator ordering identities gained by the entangled state representation and two-variable Hermite polynomials,” Commun. Theor. Phys. 38, 297–300 (2002). [CrossRef]
  53. L. Y. Hu and H. Y. Fan, “Two-mode squeezed number state as a two-variable Hermite-polynomial excitation on the squeezed vacuum,” J. Mod. Opt. 55, 2011–2024 (2008). [CrossRef]
  54. L. Y. Hu and H. Y. Fan, “Time evolution of Wigner function in laser process derived by entangled state representation,” Opt. Commun. 282, 4379–4383 (2009). [CrossRef]
  55. L. Y. Hu and Z. M. Zhang, “Nonclassicality and decoherence of photon-added squeezed thermal state in thermal environment,” J. Opt. Soc. Am. B 29, 529–537 (2012). [CrossRef]
  56. L. Y. Hu and H. Y. Fan, “Nonclassicality of photon-added squeezed vacuum and its decoherence in thermal environment,” J. Mod. Opt. 57, 1344–1354 (2010). [CrossRef]
  57. L. Y. Hu, X. X. Xu, Z. S. Wang, and X. F. Xu, “Photon-added squeezed thermal state: nonclassicality and decoherence,” Phys. Rev. A 82, 043842 (2010). [CrossRef]
  58. M. G. Genoni, M. G. A. Paris, and K. Banaszek, “Measure of the non-Gaussian character of a quantum state,” Phys. Rev. A 76, 042327 (2007). [CrossRef]
  59. M. G. Genoni, M. G. A. Paris, and K. Banaszek, “Quantifying the non-Gaussian character of a quantum state by quantum relative entropy,” Phys. Rev. A 78, 060303 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited