OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2175–2181

Optical nonreciprocity of a single two-level atom in a cavity

Xiuwen Xia, Jingping Xu, and Yaping Yang  »View Author Affiliations

JOSA B, Vol. 31, Issue 9, pp. 2175-2181 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the transmission character of a single-mode cavity containing a resonant two-level atom. Such a simple structure exhibits optical nonlinearity and spatial symmetry breaking, as well as time-reversal symmetry breaking. We perform a detailed analysis in the Purcell regime and find out that there is giant optical nonreciprocity in proper parameter space. Therefore, it is feasible to assemble such a simple atom–cavity structure to realize an acceptable optical nonreciprocal device after carefully designing.

© 2014 Optical Society of America

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(190.0190) Nonlinear optics : Nonlinear optics
(230.1150) Optical devices : All-optical devices
(270.0270) Quantum optics : Quantum optics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 26, 2014
Revised Manuscript: July 24, 2014
Manuscript Accepted: July 24, 2014
Published: August 26, 2014

Xiuwen Xia, Jingping Xu, and Yaping Yang, "Optical nonreciprocity of a single two-level atom in a cavity," J. Opt. Soc. Am. B 31, 2175-2181 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, and S.-Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110, 093901 (2013). [CrossRef]
  2. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012). [CrossRef]
  3. X. Hu, Z. Li, J. Zhang, H. Yang, Q. Gong, and X. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21, 1803–1809 (2011). [CrossRef]
  4. C. Wang, X.-L. Zhong, and Z.-Y. Li, “Linear and passive silicon optical isolator,” Sci. Rep. 2, 1–6 (2012). [CrossRef]
  5. L. J. Aplet and J. W. Carson, “A Faraday effect optical isolator,” Appl. Opt. 3, 544–545 (1964). [CrossRef]
  6. R. L. Espinola, T. Izuhara, M.-C. Tsai, J. R. M. Osgood, and H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett. 29, 941–943 (2004). [CrossRef]
  7. T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP waveguide,” Appl. Phys. Lett. 90, 023514 (2007). [CrossRef]
  8. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011). [CrossRef]
  9. S. K. Ibrahim, S. Bhandare, D. Sandel, H. Zhang, and R. Noe, “Non-magnetic 30  dB integrated optical isolator in III/V material,” Electron. Lett. 40, 1293–1294 (2004). [CrossRef]
  10. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006). [CrossRef]
  11. K. R. Allahverdyan, A. H. Gevorgyan, R. S. Hakobyan, and T. V. Galstian, “Observation of optical non-reciprocity in a single layer of transparent linear chiral media with asymmetric boundaries,” JETP Lett. 96, 694–698 (2013). [CrossRef]
  12. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photonics 7, 579–582 (2013). [CrossRef]
  13. S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal light propagation in a silicon photonic circuit”,” Science 335, 38 (2012). [CrossRef]
  14. M. O. Scully, Quantum Optics (Cambridge University, 1997).
  15. A. Auffèves-Garnier, C. Simon, J.-M. Gérard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007). [CrossRef]
  16. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007). [CrossRef]
  17. H. F. Hofmann and H. Nishitani, “Pulse-shape effects on photon-photon interactions in nonlinear optical quantum gates,” Phys. Rev. A 80, 013822 (2009). [CrossRef]
  18. G. Manzacca, H. Habibian, K. Hingerl, and G. Cincotti, “Coupled cavity polaritons for switching and slow light applications,” Photon. Nanostr. Fundam. Appl. 7, 39–46 (2009).
  19. K. Zhang and Z.-Y. Li, “Transfer behavior of quantum states between atoms in photonic crystal coupled cavities,” Phys. Rev. A 81, 033843 (2010). [CrossRef]
  20. C. Wang, “Nonlocal entanglement analysis using quantum dot and microcavity coupled system,” J. Mod. Opt. 59, 962–966 (2012). [CrossRef]
  21. R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108, 227402 (2012). [CrossRef]
  22. J. Lee, T. W. Saucer, A. J. Martin, J. M. Millunchick, and V. Sih, “Time-resolved two-pulse excitation of quantum dots coupled to a photonic crystal cavity in the Purcell regime,” Phys. Rev. Lett. 110, 013602 (2013). [CrossRef]
  23. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006). [CrossRef]
  24. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010). [CrossRef]
  25. Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012). [CrossRef]
  26. C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985). [CrossRef]
  27. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 2007).
  28. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 605–609 (2012). [CrossRef]
  29. W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341, 768–770 (2013). [CrossRef]
  30. J. Volz and A. Rauschenbeutel, “Triggering an optical transistor with one photon,” Science 341, 725–726 (2013). [CrossRef]
  31. A. Reiserer, S. Ritter, and G. Rempe, “Nondestructive detection of an optical photon,” Science 342, 1349–1351 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited