OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2188–2192

Tunneling-induced large fifth-order nonlinearity with competing linear and nonlinear susceptibilities

Yandong Peng, Aihong Yang, Bing Chen, Yan Xu, and Xiaojun Hu  »View Author Affiliations


JOSA B, Vol. 31, Issue 9, pp. 2188-2192 (2014)
http://dx.doi.org/10.1364/JOSAB.31.002188


View Full Text Article

Enhanced HTML    Acrobat PDF (350 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tunneling-induced large fifth-order nonlinearity is theoretically demonstrated in a double-quantum-dot system. The resonant tunneling induces constructive interference for the third- and fifth-order nonlinear effects. The competition between the linearity and nonlinearity leads to a transparency window at some frequency detunings, where the fifth-order nonlinear refractive index could be increased to be more than one order of magnitude larger than that on resonance. An analytical expression shows that the resonant tunneling mainly contributes to the dramatic enhancement of the fifth-order nonlinear response.

© 2014 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(190.3270) Nonlinear optics : Kerr effect
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 2, 2014
Revised Manuscript: August 4, 2014
Manuscript Accepted: August 4, 2014
Published: August 26, 2014

Citation
Yandong Peng, Aihong Yang, Bing Chen, Yan Xu, and Xiaojun Hu, "Tunneling-induced large fifth-order nonlinearity with competing linear and nonlinear susceptibilities," J. Opt. Soc. Am. B 31, 2188-2192 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-9-2188


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  2. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000). [CrossRef]
  3. S. Harris and L. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999). [CrossRef]
  4. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001). [CrossRef]
  5. H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003). [CrossRef]
  6. Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004). [CrossRef]
  7. O. Firstenberg, T. Peyronel, Q. Liang, A. Gorshkov, M. Lukin, and V. Vuletić, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–75 (2013). [CrossRef]
  8. A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508, 237–240 (2014). [CrossRef]
  9. Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71, 043819 (2005). [CrossRef]
  10. K. Dolgaleva, H. Shin, and R. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103, 113902 (2009). [CrossRef]
  11. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009). [CrossRef]
  12. X. Zhang, H. Wang, C. Liu, X. Han, C. Fan, J. Wu, and J. Gao, “Direct conversion of slow light into a stationary light pulse,” Phys. Rev. A 86, 023821 (2012). [CrossRef]
  13. H. Zheng, N. Li, Z. Zhang, Z. Wu, C. Lei, Y. Zhang, and Y. Zhang, “Power quantum control of odd-order multiwave mixing in an electromagnetically induced transparency window,” J. Opt. Soc. Am. B 31, 1263–1272 (2014). [CrossRef]
  14. W. Chen, M. Shen, Q. Kong, J. Shi, Q. Wang, and W. Krolikowski, “Interactions of nonlocal dark solitons under competing cubic–quintic nonlinearities,” Opt. Lett. 39, 1764–1767 (2014). [CrossRef]
  15. C. Hang and G. Huang, “Guiding ultraslow weak-light bullets with Airy beams in a coherent atomic system,” Phys. Rev. A 89, 013821 (2014). [CrossRef]
  16. W. Shi, X. Hu, J. Li, and F. Wang, “Entanglement of three-mode light via six-wave mixing in a four-level Y-type atomic system,” J. Phys. B 43, 155506 (2010). [CrossRef]
  17. A. Paredes, D. Feijoo, and H. Michinel, “Coherent cavitation in the liquid of light,” Phys. Rev. Lett. 112, 173901 (2014). [CrossRef]
  18. E. Falcão-Filho, C. Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013). [CrossRef]
  19. J. Faist, F. Capasso, C. Sirtori, K. West, and L. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997). [CrossRef]
  20. P. Lunnemann and J. Mørky, “Reducing the impact of inhomogeneous broadening on quantum dot based electromagnetically induced transparency,” Appl. Phys. Lett. 94, 071108 (2009). [CrossRef]
  21. H. Borges, L. Sanz, J. Villas-Boâs, O. Diniz Neto, and A. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85, 115425 (2012). [CrossRef]
  22. J. Wu, J. Gao, J. Xu, L. Silvestri, M. Artoni, G. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005). [CrossRef]
  23. H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007). [CrossRef]
  24. H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87, 235310 (2013). [CrossRef]
  25. F. Zhou, Y. Qi, H. Sun, D. Chen, J. Yang, Y. Niu, and S. Gong, “Electromagnetically induced grating in asymmetric quantum wells via Fano interference,” Opt. Express 21, 12249–12259 (2013). [CrossRef]
  26. F. Boitier, A. Orieux, C. Autebert, A. Lemaitre, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014). [CrossRef]
  27. L. Wang, A. Rastelli, S. Kiravittaya, M. Benyoucef, and O. Schmidt, “Self-assembled quantum dot molecules,” Adv. Mater. 21, 2601–2618 (2009). [CrossRef]
  28. W. Liu, A. Bracker, D. Gammon, and M. Doty, “Dynamic hole trapping in InAs/AlGaAs/InAs quantum dot molecules,” Phys. Rev. B 87, 195308 (2013). [CrossRef]
  29. K. Müller, A. Bechtold, C. Ruppert, M. Zecherle, G. Reithmaier, M. Bichler, H. Krenner, G. Abstreiter, A. Holleitner, J. Villas-Boâs, M. Betz, and J. Finley, “Electrical control of interdot electron tunneling in a double InGaAs quantum-dot nanostructure,” Phys. Rev. Lett. 108, 197402 (2012). [CrossRef]
  30. N. Sköld, A. Giroday, A. Bennett, I. Farrer, D. Ritchie, and A. Shields, “Electrical control of the exciton fine structure of a quantum dot molecule,” Phys. Rev. Lett. 110, 016804 (2013). [CrossRef]
  31. Z. Chen and G. Huang, “Stern–Gerlach effect of multi-component ultraslow optical solitons via electromagnetically induced transparency,” J. Opt. Soc. Am. B 30, 2248–2256 (2013). [CrossRef]
  32. Y. Qi, F. Zhou, J. Yang, Y. Niu, and S. Gong, “Controllable twin laser pulse propagation and dual-optical switching in a four-level quantum dot nanostructure,” J. Opt. Soc. Am. B 30, 1928–1936 (2013). [CrossRef]
  33. X. Lü, J. Wu, L. Zheng, and Z. Zhan, “Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules,” Phys. Rev. A 83, 042302 (2011). [CrossRef]
  34. P. Lunnemann and J. Mørky, “A scheme comparison of Autler–Townes based slow light in inhomogeneously broadened quantum dot media,” J. Opt. Soc. Am. B 27, 2654–2664 (2010). [CrossRef]
  35. J. Colless, A. Mahoney, J. Hornibrook, A. Doherty, H. Lu, A. Gossard, and D. Reilly, “Dispersive readout of a few-electron double quantum dot with fast RF gate sensors,” Phys. Rev. Lett. 110, 046805 (2013). [CrossRef]
  36. T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin, and A. Wallraff, “Dipole coupling of a double quantum dot to a microwave resonator,” Phys. Rev. Lett. 108, 046807 (2012). [CrossRef]
  37. J. Villas-Boâs, A. Govorov, and S. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004). [CrossRef]
  38. E. Paspalakis, Z. Kis, E. Voutsinas, and A. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004). [CrossRef]
  39. Y. Peng, Y. Niu, Y. Qi, H. Yao, and S. Gong, “Optical precursors with tunneling-induced transparency in asymmetric quantum wells,” Phys. Rev. A 83, 013812 (2011). [CrossRef]
  40. Y. Peng, Y. Niu, N. Cui, and S. Gong, “Cavity linewidth narrowing by voltage-controlled induced transparency in asymmetry quantum dot molecules,” Opt. Commun. 284, 824–827 (2011). [CrossRef]
  41. S. Marcinkevičius, A. Gushterov, and J. Reithmaier, “Transient electromagnetically induced transparency in self-assembled quantum dots,” Appl. Phys. Lett. 92, 041113 (2008). [CrossRef]
  42. J. Li, R. Yu, L. Si, and X. Yang, “Voltage-controlled storage and retrieval of an infrared-light pulse in a quantum-dot molecule,” Opt. Commun. 282, 2437–2441 (2009). [CrossRef]
  43. J. Kim, S. Chuang, P. Ku, and C. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys.: Condens. Matter 16, S3727–S3735 (2004). [CrossRef]
  44. Y. Zhang, M. Belic, Z. Wu, C. Yuan, R. wang, K. Lu, and Y. Zhang, “Multicharged optical vortices induced in a dissipative atomic vapor system,” Phys. Rev. A 88, 013847 (2013). [CrossRef]
  45. M. Saha and A. Sarma, “Modulation instability in nonlinear metamaterials induced by cubic–quintic nonlinearities and higher order dispersive effects,” Opt. Commun. 291, 321–325 (2013). [CrossRef]
  46. C. Ottaviani, S. Rebic, D. Vitali, and P. Tombesi, “Cross phase modulation in a five-level atomic medium semiclassical theory,” Eur. Phys. J. D 40, 281–296 (2006). [CrossRef]
  47. B. Luo, Y. Liu, and H. Guo, “Magnetically induced simultaneous slow and fast light,” Opt. Lett. 35, 64–66 (2010). [CrossRef]
  48. S. Sagona-Stophel, J. Weatherall, and C. Search, “Index of refraction engineering in five-level dressed interacting ground states atoms,” Opt. Lett. 36, 3130–3132 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited