OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2193–2200

Interaction between single nano-emitter and plasmonic disk–ring nanostructure with multiple Fano resonances

Xiao Ming Zhang, Jun Jun Xiao, and Qiang Zhang  »View Author Affiliations


JOSA B, Vol. 31, Issue 9, pp. 2193-2200 (2014)
http://dx.doi.org/10.1364/JOSAB.31.002193


View Full Text Article

Enhanced HTML    Acrobat PDF (920 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the emission behavior of an electric dipolar nano-emitter coupled with a disk–ring nanostructure (DRN) that sustains multiple plasmonic Fano resonances. The emitter–DRN electromagnetic coupling efficiency strongly depends on the relative position of the nano-emitter and the DRN, which determines whether the multiple Fano interactions are visibly activated. More specifically, for longitudinal polarization, the multiple Fano resonances are pronounced when the nano-emitter is at the outer apex of the disk or at the gap center of the DRN, observable in the far-field and/or near-field characteristics. However, no obvious Fano feature shows up when the nano-emitter is near the outer apex of the ring. For the case in which the nano-emitter oscillates vertically with respect to the DRN axis, Fano resonance is dramatic only when the nano-emitter is inside the gap of the DRN. We show that the cascading amplification of the dipole moment by the nanodisk is crucial for the excitation of the multiple Fano resonances. Our results are useful in engineering plasmon-modified optical spectroscopy and photon emission control, particularly in resonant plasmonic heterostructures.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.5610) Other areas of optics : Radiation
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: June 10, 2014
Revised Manuscript: July 17, 2014
Manuscript Accepted: July 30, 2014
Published: August 26, 2014

Citation
Xiao Ming Zhang, Jun Jun Xiao, and Qiang Zhang, "Interaction between single nano-emitter and plasmonic disk–ring nanostructure with multiple Fano resonances," J. Opt. Soc. Am. B 31, 2193-2200 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-9-2193


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003). [CrossRef]
  2. H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013). [CrossRef]
  3. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748–1755 (2008). [CrossRef]
  4. Y. Kuo, W. Y. Chang, H. S. Chen, Y. R. Wu, C. C. Yang, and Y. W. Kiang, “Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode,” J. Opt. Soc. Am. B 30, 2599–2606 (2013). [CrossRef]
  5. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef]
  6. Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013). [CrossRef]
  7. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005). [CrossRef]
  8. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef]
  9. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006). [CrossRef]
  10. H. S. Ee, S. K. Kim, S. H. Kwon, and H. G. Park, “Design of polarization-selective light emitters using one-dimensional metal grating mirror,” Opt. Express 19, 1609–1616 (2011). [CrossRef]
  11. Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).
  12. S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013). [CrossRef]
  13. Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011). [CrossRef]
  14. X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006). [CrossRef]
  15. W. S. Stark, “Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments in drosophlia,” J. Comp. Physiol. 96, 343–356 (1975). [CrossRef]
  16. Z. Cao, R. Lu, Q. Wang, N. Tessema, Y. Jiao, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, “Cyclic additional optical true time delay for microwave beam steering with spectral filtering,” Opt. Lett. 39, 3402–3405 (2014). [CrossRef]
  17. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  18. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]
  19. Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014). [CrossRef]
  20. Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer, ” Opt. Express 21, 6601–6608 (2013). [CrossRef]
  21. K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010). [CrossRef]
  22. M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19, 4949–4956 (2011). [CrossRef]
  23. Y. Zhang, T. Q. Jia, H. M. Zhang, and Z. Z. Xu, “Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett. 37, 4919–4921 (2012). [CrossRef]
  24. Q. Zhang and J. J. Xiao, “Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole Fano resonances,” Opt. Lett. 38, 4240–4243 (2013). [CrossRef]
  25. B. Y. Zhang and J. P. Guo, “Optical properties of a two-dimensional nanodisk array with super-lattice defects,” J. Opt. Soc. Am. B 30, 3011–3017 (2013). [CrossRef]
  26. B. Tang, L. Dai, and C. Jiang, “Transmission enhancement of slow light by a subwavelength plasmon-dielectric system,” J. Opt. Soc. Am. B 27, 2433–2437 (2010). [CrossRef]
  27. K. Choudhary, S. Adhikari, A. Biswas, A. Ghosal, and A. K. Bandyopadhyay, “Fano resonance due to discrete breather in nonlinear Klein–Gordon lattice in metamaterials,” J. Opt. Soc. Am. B 29, 2414–2419 (2012). [CrossRef]
  28. C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011). [CrossRef]
  29. B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013). [CrossRef]
  30. T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive simulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. B 9, 2179–2189 (1992). [CrossRef]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  32. J. W. Liaw and C. Y. Jiang, “Plasmonic modes of Ag nanoshell excited by Bi-dipole,” Plasmonics 8, 255–265 (2013). [CrossRef]
  33. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011). [CrossRef]
  34. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003). [CrossRef]
  35. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006). [CrossRef]
  36. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007). [CrossRef]
  37. J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013). [CrossRef]
  38. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011). [CrossRef]
  39. B. M. Ross and L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34, 896–898 (2009). [CrossRef]
  40. N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013). [CrossRef]
  41. N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014). [CrossRef]
  42. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013). [CrossRef]
  43. Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Perot cavity,” Nanoscale 4, 5308–5311 (2012). [CrossRef]
  44. V. Giannini, J. Sánchez-Gil, O. L. Muskens, and J. G. Rivas, “Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence,” J. Opt. Soc. Am. B 26, 1569–1577 (2009). [CrossRef]
  45. L. A. Blanco and F. J. Garíca de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited