OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 9 — Sep. 1, 2014
  • pp: 2214–2220

Note on “discrete-like diffraction dynamics in free space”: highlighting the variety of solving procedures

G. Dattoli and A. Torre  »View Author Affiliations

JOSA B, Vol. 31, Issue 9, pp. 2214-2220 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new family of paraxial optical beams has been recently introduced in the literature [Opt. Express 21, 17951 (2013)], having the significant feature of exhibiting discrete-like diffraction patterns reminiscent of those observed in periodic evanescently coupled waveguide lattices. In this connection, we wish to highlight the symmetry properties of the paraxial wave equation, properties that, in our opinion, are still not exploited at their full potentiality, and the effectiveness of differential equation-solving procedures based on the generating-function method.

© 2014 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(350.5500) Other areas of optics : Propagation

ToC Category:

Original Manuscript: March 12, 2014
Revised Manuscript: June 10, 2014
Manuscript Accepted: August 1, 2014
Published: August 28, 2014

G. Dattoli and A. Torre, "Note on “discrete-like diffraction dynamics in free space”: highlighting the variety of solving procedures," J. Opt. Soc. Am. B 31, 2214-2220 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Perez-Leija, F. Soto-Eguibar, S. Chavez-Cerda, A. Szameit, H. Moya-Cessa, and D. N. Christodoulides, “Discrete-like diffraction dynamics in free space,” Opt. Express 21, 17951–17960 (2013). [CrossRef]
  2. G. Dattoli, L. Giannessi, L. Mezi, and A. Torre, “Theory of generalized Bessel functions,” Nuovo Cimento B 105, 327–348 (1990). [CrossRef]
  3. G. Dattoli, A. Torre, S. Lorenzutta, and G. Maino, “Theory of generalized Bessel functions II,” Nuovo Cimento B 106, 21–51 (1991). [CrossRef]
  4. G. Dattoli and A. Torre, Theory and Applications of the Generalized Bessel Functions (Aracne, 1996).
  5. L. S. Brown and T. W. B. Kibble, “Interaction of intense laser beams with electrons,” Phys. Rev. 133, A705–A719 (1964). [CrossRef]
  6. H. R. Reiss, “Foundations of strong-field physics,” in Lectures on Ultrafast Intense Laser Science, K. Yamanouchi, ed. (Springer-Verlag, 2010)., pp. 41–84.
  7. V. I. Usachenko and S.-I. Chu, “Strong-field ionization of laser-irradiated light homonuclear diatomic molecules: a generalized strong-field approximation-linear combination of atomic orbitals model,” Phys. Rev. A 71, 063410 (2005). [CrossRef]
  8. A. Jaron-Becker, “Molecular dynamics in strong laser fields,” IEEE J. Sel. Top. Quantum Electron. 18, 105–112 (2012). [CrossRef]
  9. C. S. E. van Ditzhuijzen, A. Tauschinsky, and H. B. van Linden van den Heuvell, “Observation of Stueckelberg oscillations in dipole-dipole interactions,” Phys. Rev. A 80, 063407 (2009). [CrossRef]
  10. A. Jaron-Becker, A. Becker, and F. H. M. Faisal, “Dependence of strong-field photoelectron angular distributions on molecular orientation,” J. Phys. B 36, L375–L380 (2003). [CrossRef]
  11. G. Dattoli, A. Renieri, and A. Torre, Lectures in Free-Electron Laser Theory and Related Topics (World Scientific, 1995).
  12. V. Strakhovenko, X. Artru, R. Chehab, and M. Chevallier, “Generation of circularly polarized photons for a linear collider polarized positron source,” Nucl. Instrum. Methods Phys. Res. A 547, 320–333 (2005). [CrossRef]
  13. F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, and A. Tünnermann, “Second-order coupling in femtosecond-laser-written waveguide arrays,” Opt. Lett. 33, 2689–2691 (2008). [CrossRef]
  14. A. Szameit, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Long-range interaction in waveguide lattices,” Phys. Rev. A 77, 043804 (2008). [CrossRef]
  15. E. G. Kalnins and W. Miller, “Lie theory and separation of variables. 5. The equations iUt+Uxx = 0 and iUt+Uxx − c/x2U = 0,” J. Math. Phys. 15, 1728–1737 (1974). [CrossRef]
  16. C. P. Boyer, E. G. Kalnins, and W. Miller, “Lie theory and separation of variables. 6. The equation iUt+Δ2U = 0,” J. Math. Phys. 16, 499–511 (1975). [CrossRef]
  17. W. Miller, Symmetry and Separation of Variables (Addison-Wesley, 1977).
  18. A. Torre, “Linear and quadratic exponential modulation of the solutions of the paraxial wave equation,” J. Opt. 12, 035701 (2010). [CrossRef]
  19. A. Torre, “Paraxial wave equation: Lie-algebra based approach,” in Mathematical Optics: Classical, Quantum, and Computational Methods, V. Lakshminarayanan, M. L. Calvo, and T. Alieva, eds. (CRC Press, 2013), Chap. 10, pp. 341–417.
  20. D. Babusci, G. Dattoli, and M. Del Franco, “Lectures on mathematical methods for physics,” (ENEA, 2010).
  21. G. Dattoli, A. Torre, and M. Carpanese, “The Hermite-Bessel functions: a new point of view on the theory of the generalized Bessel functions,” Radiat. Phys. Chem. 51, 221–228 (1998). [CrossRef]
  22. M. P. Appell, “Sur l’équation ∂2z/∂x2 ∂z/∂y = 0 et la théorie de la chaleur,” J. Math. Pures Appl. 8, 187–216 (1892).
  23. D. V. Widder, The Heat Equation (Academic, 1975).
  24. H. Leutwiler, “On the Appell transformation,” in Potential Theory, J. Kràl, J. Lukws, I. Netuka, and J. Vesely, eds. (Plenum, 1988), pp. 215–222.
  25. K. Shimomura, “The determination of caloric morphisms on Euclidean domains,” Nagoya Math. J. 158, 133–166 (2000).
  26. M. Brzezina, “Appell type transformation for the Kolmogorov operator,” Mathematische Nachrichten 169, 59–67 (1994). [CrossRef]
  27. A. Torre, “The Appell transformation for the paraxial wave equation,” J. Opt. 13, 015701 (2011). [CrossRef]
  28. A. Torre, “Appell transformation and canonical transforms,” SIGMA 7, 072 (2011), http://www.emis.de/journals/SIGMA/S4.html .
  29. A. Torre, “Appell transformation and symmetry transformations for the paraxial wave equation,” J. Opt. 13, 075710 (2011). [CrossRef]
  30. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]
  31. A. E. Siegman, Lasers (University Science, 1986).
  32. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  33. T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, 1976).
  34. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer-Verlag, 1966).
  35. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 7th ed. (Academic, 2007) #3.462.2.
  36. P. Appell and J. Kampé de Fériet, Fonctions Hypergeométriques and Hypersphériques. Polynomes d’Hermite (Gauthier-Villars, 1926).
  37. A. A. Sukhorukov, A. S. Solntev, and J. S. Sipe, “Classical simulation of squeezed light in optical waveguide arrays,” Phys. Rev. A 87, 053823 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited