OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 5, Iss. 6 — Jun. 1, 1988
  • pp: 1266–1272

Calculation of the emission spectrum of Eu3+ in a tetragonal site in SrF2

K. Lesniak  »View Author Affiliations


JOSA B, Vol. 5, Issue 6, pp. 1266-1272 (1988)
http://dx.doi.org/10.1364/JOSAB.5.001266


View Full Text Article

Enhanced HTML    Acrobat PDF (873 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A model is presented for predicting the emission spectra of trivalent lanthanide ions in sites of tetragonal symmetry in fluorite-structure crystal hosts. The utility of the model is examined by comparing the results of the calculations performed with the experimental data for the Eu3+:SrF2 system. The a priori calculated energy-level scheme is found to reproduce the 14 experimentally observed crystal-field levels of the 7FJ multiplets of Eu3+ with a rms deviation of 24.5 cm−1. Reasonably accurate model predictions of most emission-line intensities can also be obtained by including contributions from electrostatic shielding, wave-function expansion, and a modified energy separation between the 4f configuration and the g symmetry perturbing states.

© 1988 Optical Society of America

History
Original Manuscript: September 28, 1987
Manuscript Accepted: November 30, 1987
Published: June 1, 1988

Citation
K. Lesniak, "Calculation of the emission spectrum of Eu3+ in a tetragonal site in SrF2," J. Opt. Soc. Am. B 5, 1266-1272 (1988)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-5-6-1266


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Hamers, J. R. Wietfeldt, J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683 (1982). [CrossRef]
  2. J. P. Jouart, C. Bissieux, G. Mary, M. Egee, “A spectroscopic study of Eu3+ centers in SrF2 using a site-selective excitation technique,” J. Phys. C 18, 1539 (1985). [CrossRef]
  3. F. J. Weesner, J. C. Wright, J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B 33, 1372 (1986). [CrossRef]
  4. N. Karayianis, C. A. Morrison, “Rare earth ion-host crystal interactions. 2. Local distortion and other effects in reconciling lattice sums and phenomenological Bkm,” Rep. TR-1682 (Harry Diamond Laboratories, Adelphi, Md., 1975).
  5. R. P. Leavitt, C. A. Morrison, D. E. Wortman, “Rare earth ion–host crystal interactions. 3. Three-parameter theory of crystal fields,” Rep. TR-1673 (Harry Diamond Laboratories, Adelphi, Md., 1975).
  6. C. A. Morrison, R. P. Leavitt, “Spectroscopic properties of triply ionized lanthanides in transparent host crystals,” in Handbook on the Physics and Chemistry of Rare Earths, Vol. 5, K. A. Gschneidner, L. Eyring, eds. (North-Holland, Amsterdam, 1982), p. 461. [CrossRef]
  7. K. K. Deb, R. G. Buser, C. A. Morrison, R. P. Leavitt, “Crystal fields and intensities of triply ionized rare-earth ions in cubic lanthanum oxyfluoride: an efficient 4F3/2→ 4I9/2 LaOF:Nd laser,” J. Opt. Soc. Am. 71, 1463 (1981). [CrossRef]
  8. R. P. Leavitt, C. A. Morrison, “Crystal-field analysis of triply ionized rare earth ions in lanthanum trifluoride. II. Intensity calculations,” J. Chem. Phys. 73, 749 (1980). [CrossRef]
  9. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962). [CrossRef]
  10. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962). [CrossRef]
  11. K. Lesniak, “Model simulation of the tetragonal symmetry center of a rare-earth ion in a fluorite lattice,” J. Phys. C 19, 2721 (1986). [CrossRef]
  12. M. Tovar, C. A. Ramos, C. Fainstein, “Lattice distortions and local compressibility around trivalent rare-earth impurities in fluorites,” Phys. Rev. B 28, 4813 (1983). [CrossRef]
  13. R. J. Kimble, P. J. Welcher, J. J. Fontanella, M. C. Wintersgill, C. G. Andeen, “Computer modelling of simple point defects in rare-earth-doped alkaline-earth fluorides,” J. Phys. C 15, 3441 (1982). [CrossRef]
  14. J. Corish, C. R. A. Catlow, P. W. M. Jacobs, S. H. Ong, “Defect aggregation in anion excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425 (1982). [CrossRef]
  15. J. P. Jouart, Laboratoire de Recherches Optiques, Faculté des Sciences, Université de Reims, Reims, France (personal communication).
  16. B. G. Wybourne, Spectroscopic Properties of Rare Earths (Wiley, New York, 1965).
  17. R. M. Sternheimer, “Shielding and antishielding effects for various ions and atomic systems,” Phys. Rev. 146, 140 (1966). [CrossRef]
  18. A. J. Freeman, R. E. Watson, “Theoretical investigations of some magnetic and spectroscopic properties of rare earth ions,” Phys. Rev. 127, 2058 (1962). [CrossRef]
  19. P. Erdos, J. H. Kang, “Electronic shielding of Pr3+and Tm3+ ions in crystals,” Phys. Rev. B 6, 3393 (1972). [CrossRef]
  20. J. D. Axe, “Radiative transition probabilities within 4fn configuration. The fluorescence spectrum of europium ethylsulfate,” J. Chem. Phys. 39, 1154 (1963). [CrossRef]
  21. G. S. Ofelt, “Structure of the f6 configuration with application to rare-earth ions,” J. Chem. Phys. 38, 2171 (1963). [CrossRef]
  22. C. W. Nielson, G. F. Koster, Spectroscopic Coefficients for the pn, dn, and fn Configurations (MIT Press, Cambridge, Mass., 1963).
  23. W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325 (1966). [CrossRef]
  24. For example, see R. M. Sternheimer, M. Blume, R. F. Peierls, “Shielding of crystal fields at rare-earth ions,” Phys. Rev. 173, 376 (1968);D. Sengupta, J. O. Artman, “Crystal-field shielding parameters for Nd3+ and Np4+,” Phys. Rev. B 1, 2986 (1970);D. K. Ray, “Investigations into the origin of the crystalline electric field effects on rare earth ions. II. Contributions from the rare earth orbitals,” Proc. Phys. Soc. (London) 82, 47 (1963). [CrossRef]
  25. B. R. Judd, “An analysis of the fluorescence spectrum of neodymium chloride,” Proc. R. Soc. London Ser. A 251, 134 (1959). [CrossRef]
  26. P. C. Becker, N. Edelstein, B. R. Judd, R. C. Leavitt, G. M. S. Lister, “The role of g electrons in the optical spectroscopy of lanthanide ions in crystals,” J. Phys. C 18, L1063 (1985). [CrossRef]
  27. J. M. Baker, E. R. Davies, J. P. Hurrell, “Electron nuclear double resonance in calcium fluoride containing Yb3+ and Ce3+ in tetragonal sites,” Proc. R. Soc. London Ser. A 308, 403 (1968).
  28. R. D. Peacock, “The intensities of lanthanide f ↔ f transitions,” Struct. Bonding 22, 83 (1975). [CrossRef]
  29. M. F. Reid, F. S. Richardson, “What do f–f electric dipole intensity parameters tell us about mechanism,” in Rare Earths Spectroscopy, B. Jezowska–Trzebiatowska, J. Legendziewicz, W. Strek, eds. (World Scientific, Singapore, 1985), p. 298.
  30. C. A. Morrison, N. Karayianis, D. E. Wortman, “Rare earth ion-host lattice interactions. 4. Predicting spectra and intensities of lanthanides in crystals,” Rep. TR-1816 (Harry Diamond Laboratories, Adelphi, Md., 1977).
  31. M. F. Reid, J. J. Dallara, F. S. Richardson, “Comparison of calculated and experimental 4f→ 4f intensity parameters for lanthanide complexes with isotropic ligands,” J. Chem. Phys. 79, 5743 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited