OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 5, Iss. 7 — Jul. 1, 1988
  • pp: 1412–1423

Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses

W. P. Risk  »View Author Affiliations


JOSA B, Vol. 5, Issue 7, pp. 1412-1423 (1988)
http://dx.doi.org/10.1364/JOSAB.5.001412


View Full Text Article

Enhanced HTML    Acrobat PDF (1270 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many solid-state lasers of current interest exhibit reabsorption loss. Previous modeling calculations of laser performance with longitudinal pumping either have neglected reabsorption loss or have been valid only for certain special cases of the ratio of the pump- and laser-beam waists. Rigorous numerical modeling calculations have been carried out to provide a comprehensive understanding of the behavior of longitudinally pumped solid-state lasers, including reabsorption loss and for arbitrary sizes of the pump- and laser-beam waists. In addition, certain aspects of laser behavior that have traditionally not been discussed in papers on laser modeling, such as clamping, saturation, and spatial distribution of the population-inversion density, are investigated to provide a general understanding of laser performance. The results are applied to a particular solid-state laser of current practical interest, the 946-nm Nd:YAG laser.

© 1988 Optical Society of America

History
Original Manuscript: January 7, 1988
Manuscript Accepted: March 4, 1988
Published: July 1, 1988

Citation
W. P. Risk, "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Am. B 5, 1412-1423 (1988)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-5-7-1412


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. F. Johnson, R. A. Thomas, “Maser oscillations at 0.9 and 1.35 microns in CaWO4:Nd3+,” Phys. Rev. 131, 2038 (1963). [CrossRef]
  2. R. W. Wallace, S. E. Harris, “Oscillation and doubling of the 0.946 μm line in Nd3+:YAG,” Appl. Phys. Lett. 15, 111 (1969). [CrossRef]
  3. M. Birnbaum, A. W. Tucker, C. L. Fincher, “Cw room-temperature laser operation of Nd:CAMGAR at 0.941 and 1.059 μm,” J. Appl. Phys. 49, 2984 (1978). [CrossRef]
  4. T. Y. Fan, R. L. Byer, “Continuous-wave operation at a room-temperature, diode-laser-pumped, 946-nm Nd:YAG laser,” Opt. Lett. 12, 809 (1987). [CrossRef] [PubMed]
  5. W. P. Risk, W. Lenth, “Room temperature, cw 946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm,” Opt. Lett. 12, 993 (1987). [CrossRef] [PubMed]
  6. E. W. Duczynski, G. Huber, P. Mitzscherlich, “Laser action of Cr, Nd, Tm, Ho-doped garnets,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, Berlin, 1986), p. 282. [CrossRef]
  7. R. Allen, L. Esterowitz, L. Goldberg, J. F. Weller, M. Storm, “Diode-pumped 2 μm holmium laser,” Electron. Lett. 22, 947 (1986). [CrossRef]
  8. T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tmsensitized Ho:Y3Al5O12 laser at 300 K,” Opt. Lett. 12, 678 (1987). [CrossRef] [PubMed]
  9. G. Kintz, L. Esterowitz, R. Allen, “Cascade laser emission at 2.3.1 and 2.08 μm from laser diode pumped Tm, Ho:LiYF4 at room temperature,” in Digest of Topical Meeting on Tunable Solid-State Lasers (Optical Society of America, Washington, D.C., 1987), p. 20.
  10. E. W. Duczynski, G. Huber, K. Petermann, H. Strange, “Continuous wave 1600 nm laser-action in Er-doped garnets at room temperature,” in Digest of Topical Meeting on Tunable Solid-State Lasers (Optical Society of America, Washington, D.C., 1987), p. 197.
  11. A. J. Silversmith, W. Lenth, R. M. Macfarlane, “Green infrared-pumped erbium upconversion laser,” Appl. Phys. Lett. 51, 1977 (1987). [CrossRef]
  12. D. L. Sipes, “Highly efficient neodymium:yttrium aluminum garnet laser end pumped by a semiconductor laser array,” Appl. Phys. Lett. 47, 74 (1985). [CrossRef]
  13. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, “Efficient, frequency stable laser diode pumped Nd:YAG laser,” Opt. Lett. 10, 62 (1985). [CrossRef] [PubMed]
  14. H. Po, F. Hakimi, R. J. Mansfield, R. P. Tumminelli, B. C. McCollum, E. Snitzer, “Neodymium fiber lasers at 0.905, 1.06, and 1.4 μm,” J. Opt. Soc. Am. A 3(13), P103 (1986).
  15. R. B. Allen, S. J. Scalise, “Continuous operation of a YAlG:Nd laser by injection luminescent pumping,” Appl. Phys. Lett. 14, 188 (1969). [CrossRef]
  16. W. J. Kozlovsky, T. Y. Fan, R. L. Byer, “Diode-pumped continuous wave Nd:glass laser,” Opt. Lett. 11, 788 (1986). [CrossRef] [PubMed]
  17. T. Y. Fan, G. J. Dixon, R. L. Byer, “Efficient GaAlAs diode-laser-pumped operation of Nd:YLF at 1.047 μm with intracavity doubling to 523.6 nm,” Opt. Lett. 11, 204 (1986). [CrossRef]
  18. D. G. Hall, R. J. Smith, R. R. Rice, “Pump-size effects in Nd:YAG lasers,” Appl. Opt. 19, 3041 (1980). [CrossRef] [PubMed]
  19. L. W. Casperson, “Laser power calculations: sources of error,” Appl. Opt. 19, 422 (1980). [CrossRef] [PubMed]
  20. P. F. Moulton, “An investigation of the Co:MgF2laser system,” IEEE J. Quantum Electron. QE-21, 1582 (1985). [CrossRef]
  21. T. Y. Fan, R. L. Byer, “Modeling and cw operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. QE-23, 605 (1987).
  22. K. Kubodera, K. Otsuka, “Single-transverse-mode LiNdP4O12 slab waveguide laser,” J. Appl. Phys. 50, 653 (1979). [CrossRef]
  23. H. G. Danielmeyer, “Progress in Nd:YAG lasers,” in Lasers: A Series of Advances, A. K. Levine, A. J. DeMaria, eds. (Dekker, New York, 1976).
  24. M. J. F. Digonnet, C. J. Gaeta, “Theoretical analysis of optical fiber laser amplifiers and oscillators,” Appl. Opt. 24, 333 (1985). [CrossRef] [PubMed]
  25. Strictly speaking, the normalization of rP is taken over the crystal, whereas the normalization of ϕ0 is taken over the entire cavity. For simplicity, it will be assumed that the crystal and the cavity lengths are the same, as would be the case, for instance, in a monolithic Nd:YAG laser in which the mirror coatings are deposited directly onto the ends of the laser crystal. The case when the crystal and cavity lengths are not the same is easily accounted for with minor modifications to the theory presented here, and the assumption of identical crystal and cavity lengths does not significantly alter the basic results.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited