OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 5, Iss. 8 — Aug. 1, 1988
  • pp: 1763–1774

Analysis of transient phase conjugation in photorefractive media

George C. Papen, Bahaa E. A. Saleh, and John A. Tataronis  »View Author Affiliations


JOSA B, Vol. 5, Issue 8, pp. 1763-1774 (1988)
http://dx.doi.org/10.1364/JOSAB.5.001763


View Full Text Article

Enhanced HTML    Acrobat PDF (1250 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The response of a photorefractive phase conjugator to time-varying signals is examined. Maxwell’s equations are coupled to the material equations followed by linearization using a strong undepleted pump approximation and simplification by the slowly varying envelope approximation. The resulting set of equations is solved by frequency-domain techniques. The solution is expressed in terms of a transfer function that relates the complex frequencies of the probe and the conjugate field. Limiting forms of the transfer function are derived, and a comparison with a Kerr material is made. The effects of various parameters on the fidelity and stability of the conjugation process are determined. Numerical results are presented showing the distortion of time-varying signals owing to the nonideal conjugation process.

© 1988 Optical Society of America

History
Original Manuscript: October 19, 1987
Manuscript Accepted: March 1, 1988
Published: August 1, 1988

Citation
George C. Papen, Bahaa E. A. Saleh, and John A. Tataronis, "Analysis of transient phase conjugation in photorefractive media," J. Opt. Soc. Am. B 5, 1763-1774 (1988)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-5-8-1763


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. See, for example, B. Ya. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation, Vol. 42 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1985). [CrossRef]
  2. D. M. Pepper, J. AuYeung, D. Fekete, A. Yariv, “Spatial convolution and correlation of optical fields via four-wave mixing,” Opt. Lett. 3, 7–9 (1978). [CrossRef] [PubMed]
  3. J. Feinberg, R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519–521 (1980). [CrossRef] [PubMed]
  4. G. J. Dunning, E. Marom, Y. Owechko, B. H. Soffer, “All-optical associative memory with shift invariance and multiple-image recall,” Opt. Lett. 12, 346–348 (1987). [CrossRef] [PubMed]
  5. O. Ikeda, “Low-pass, high-pass, and bandpass spatial-filtering characteristics of a BaTiO3phase conjugator,” J. Opt. Soc. Am. B 4, 1387–1391 (1987). [CrossRef]
  6. For review, see Optical Phase Conjugation, R. A. Fisher, ed.(Academic, New York, 1983).
  7. For reviews, see P. Gunter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982);T. J. Hall, R. Jaura, L. M. Conners, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985). [CrossRef]
  8. J. P. Huignard, J. P. Herriau, P. Aubourg, E. Spitz, “Phase-conjugate wavefront generation via real-time holography in BSO crystals,” Opt. Lett. 4, 21–23 (1979). [CrossRef]
  9. M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984). [CrossRef]
  10. J. H. Marburger, “Optical pulse integration and chirp reversal in degenerate four-wave mixing,” Appl. Phys. Lett. 32, 372–374 (1978). [CrossRef]
  11. B. Ya. Zel’dovich, M. A. Orlova, V. V. Shkunov, “Nonstationary theory of the time of establishment of four-wave wave-front reversal,” Sov. Phys. Dokl. 25, 390–391 (1980).
  12. W. W. Rigrod, R. A. Fisher, B. J. Feldman, “Transient analysis of nearly degenerate four-wave mixing,” Opt. Lett. 5, 105–107 (1980). [CrossRef] [PubMed]
  13. R. A. Fisher, B. R. Suydam, B. J. Feldman, “Transient analysis of Kerr-like phase conjugators using frequency-domain techniques,” Phys. Rev. A 23, 3071–3083 (1981). [CrossRef]
  14. N. Kukhtarev, V. Markov, S. Odulov, “Transient energy transfer during hologram formation in LiNbO3in external electric field,” Opt. Commun. 23, 338–343 (1977). [CrossRef]
  15. J. M. Heaton, L. Solymar, “Transient energy transfer during hologram formation in photorefractive crystals,” Opt. Acta 32, 397–408 (1985);M. Cronin-Golomb, “Analytic solution for photorefractive two-beam coupling with time-varying signals,” in Digest of Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1987), pp. 142–145. [CrossRef]
  16. F. P. Strohkendl, J. M. C. Jonathan, R. W. Hellwarth, “Hole–electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986). [CrossRef]
  17. G. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363–3366 (1986). [CrossRef]
  18. N. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady-state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  19. G. Valley, “Short pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. QE-19, 1637–1645 (1983). [CrossRef]
  20. P. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefractive BSO crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985). [CrossRef]
  21. J. A. Tataronis, G. C. Papen, “Transient phase conjugation in plasmas,” to be submitted to Phys. Fluids.
  22. A. L. Smirl, G. C. Valley, R. A. Mullen, K. Bohnert, C. D. Mire, T. F. Boggess, “Picosecond photorefractive effect in BaTiO3,” Opt. Lett. 12, 501–503 (1987). [CrossRef] [PubMed]
  23. G. C. Valley, M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983). [CrossRef]
  24. S. Ducharme, J. Feinberg, “Speed of the photorefractive effect in a BaTiO3single crystal,” J. Appl. Phys. 56, 839–842 (1984). [CrossRef]
  25. S. D. Fisher, Complex Variables (Wadsworth and Brooks, Belmont, Calif., 1986).
  26. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley-Inter-science, New York, 1984).
  27. J. F. Lam, “Spectral response of nearly degenerate four-wave mixing in photorefractive materials,” Appl. Phys. Lett. 42, 155–157 (1982). [CrossRef]
  28. M. B. Klein, “Beam coupling in undoped GaAs at 1.06 μ m using the photorefractive effect,” Opt. Lett. 9, 350–352 (1984). [CrossRef] [PubMed]
  29. A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984). [CrossRef]
  30. P. Yeh, “Fundamental limit of the speed of the photorefractive effect and its impact on device applications and materials research,” Appl. Opt. 26, 602–604 (1987);A. M. Glass, M. B. Klein, G. C. Valley, “Fundamental limit of the speed of the photorefractive effect and its impact on device applications and materials research: comment,” Appl. Opt. 26, 3189–3190 (1987);P. Yeh, “Fundamental limit of the speed of the photorefractive effect and its impact on device applications and materials research: author’s reply to comment,” Appl. Opt. 26, 3190–3191 (1987). [CrossRef] [PubMed]
  31. K. MacDonald, J. Feinberg, “Enhanced four-wave mixing by use of frequency-shifted optical waves in photorefractive BaTiO3,” Phys. Rev. Lett. 55, 821–824 (1985). [CrossRef] [PubMed]
  32. B. Fischer, “Theory of self-frequency detuning of oscillations by wave mixing in photorefractive crystals,” Opt. Lett. 11, 236–238 (1986). [CrossRef] [PubMed]
  33. B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, “Amplified reflection, transmission, and self-oscillation in real-time holography,” Opt. Lett. 6, 519–521 (1981). [CrossRef] [PubMed]
  34. E. O. Brighham, The Fast Fourier Transform (Prentice-Hall, Englewood Cliffs, N.J., 1971).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited