OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 5, Iss. 9 — Sep. 1, 1988
  • pp: 1910–1926

Influence of laser-mode statistics on noise in nonlinear-optical processes—application to single-shot broadband coherent anti-Stokes Raman scattering thermometry

Stefan Kröll and Dennis Sandell  »View Author Affiliations

JOSA B, Vol. 5, Issue 9, pp. 1910-1926 (1988)

View Full Text Article

Enhanced HTML    Acrobat PDF (1830 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A quantitative approach for calculating the noise due to the stochastic nature of multimode laser radiation in nonlinear-optical processes is presented. The model is applicable when it is appropriate to describe the nonlinear interaction with a perturbation expansion in the incoming field, and it is derived under the assumption of independent individual laser-mode intensities and phases. It is possible to separate noise contributions from mode-amplitude and -phase fluctuations, respectively, and also to identify the noise contribution from each laser source. For coherent anti-Stokes Raman scattering (CARS) thermometry, the model shows that with a single-mode pump laser the stochastic phases in the dye laser do not generate noise in the conventional approach and that amplitude fluctuations in the dye laser(s) do not (significantly) generate noise in the dual-broadband approaches. Thus, in the dual-broadband approaches, the spectral noise in the Stokes beam is not a lower limit for the noise in the CARS beam. The model seems to overestimate the noise due to phase fluctuations and to underestimate the noise due to amplitude fluctuations.

© 1988 Optical Society of America

Original Manuscript: October 19, 1987
Manuscript Accepted: April 25, 1988
Published: September 1, 1988

Stefan Kröll and Dennis Sandell, "Influence of laser-mode statistics on noise in nonlinear-optical processes—application to single-shot broadband coherent anti-Stokes Raman scattering thermometry," J. Opt. Soc. Am. B 5, 1910-1926 (1988)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effects of laser field statistics on coherent anti-Stokes Raman spectroscopy intensities,” Opt. Lett. 9, 223 (1984). [CrossRef] [PubMed]
  2. D. A. Greenhalgh, S. T. Whittley, “Mode noise in broadband CARS spectroscopy,” Appl. Opt. 24, 907 (1985). [CrossRef] [PubMed]
  3. R. J. Hall, “The statistical behaviour of nonresonant CARS intensities,” Opt. Commun. 56, 127 (1985). [CrossRef]
  4. D. R. Snelling, R. A. Sawchuk, R. E. Mueller, “Single pulse CARS noise: a comparison between single-mode and multimode pump lasers,” Appl. Opt. 24, 2771 (1985). [CrossRef] [PubMed]
  5. R. L. Farrow, L. A. Rahn, “Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers,” J. Opt. Soc. Am. B 2, 903 (1985). [CrossRef]
  6. R. J. Hall, “Theoretical analysis of non-thermal pump effects in broadband CARS spectroscopy,” Opt. Quantum Electron. 18, 319 (1986). [CrossRef]
  7. G. S. Agarwal, R. L. Farrow, “Theoretical modeling of two-color CARS spectra measured with a frequency-doubled, multimode pump laser,” J. Opt. Soc. Am. B 3, 1596 (1986). [CrossRef]
  8. R. J. Hall, D. A. Greenhalgh, “Noise properties of single-pulse CARS spectroscopy with multimode pump sources,” J. Opt. Soc. Am. B 3, 1637 (1986). [CrossRef]
  9. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, T. Parameswaran, “Precision of multiplex CARS temperatures using both single-mode and multimode pump lasers,” Appl. Opt. 26, 99 (1987). [CrossRef] [PubMed]
  10. S. Kröll, M. Aldén, T. Berglind, R. J. Hall, “Noise characteristics of single shot broadband Raman resonant CARS with single- and multimode lasers,” Appl. Opt. 26, 1068 (1987). [CrossRef]
  11. R. J. Hall, A. C. Eckbreth, “Coherent anti-Stokes Raman spectroscopy (CARS) application to combustion diagnostics,” Laser Appl. 5, 213 (1984).
  12. M. Pealat, P. Bouchardy, M. Lefebvre, J.-P. Taran, “Precision of multiplex CARS temperature measurements,” Appl. Opt. 24, 1012 (1985). [CrossRef] [PubMed]
  13. A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS temperature and species measurements in augmented jet engine exhausts,” Appl. Opt. 23, 1328 (1984). [CrossRef] [PubMed]
  14. D. R. Snelling, T. Parameswaran, G. J. Smallwood, “Noise characteristics of single-shot broadband CARS signals,” Appl. Opt. 26, 4298 (1987). [CrossRef] [PubMed]
  15. A. C. Eckbreth, T. J. Anderson, “Dual broadband CARS for simultaneous, multiple species measurements,” Appl. Opt. 24, 2731 (1985). [CrossRef] [PubMed]
  16. A. C. Eckbreth, T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation,” Opt. Lett. 11, 496 (1986). [CrossRef] [PubMed]
  17. M. Aldén, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493 (1986). [CrossRef] [PubMed]
  18. W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 29, 174 (1976). [CrossRef]
  19. M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625 (1979). [CrossRef]
  20. H. Kataoka, S. Maeda, C. Hirose, “Effects of laser linewidth on the coherent anti-Stokes Raman spectroscopy spectral profile,” Appl. Spectrosc. 36, 565 (1982). [CrossRef]
  21. R. E. Teets, “Accurate convolutions of coherent anti-Stokes Raman spectra,” Opt. Lett. 9, 226 (1984). [CrossRef] [PubMed]
  22. D. A. Greenhalgh, R. J. Hall, “A closed form solution for the CARS intensity convolution,” Opt. Commun. 57, 125 (1986). [CrossRef]
  23. F. Y. Yueh, E. J. Beiting, “Analytical expressions for coherent anti-Stokes Raman spectral (CARS) profiles,” Comp. Phys. Commun. 42, 65 (1986). [CrossRef]
  24. M. Aldén, Department of Atomic Physics, Combustion Centre, Lund Institute of Technology, Box 118, S-221 Lund, Sweden (personal communication).
  25. G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, New York, 1981), Chap. 3B.
  26. M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982).
  27. See, e.g., in several of the contributions in the special issue on stimulated Raman and Brillouin scattering for laser beam control, J. Opt. Soc. Am. B 3 (10)(1986), and references therein.
  28. L. A. Westling, M. G. Raymer, “Intensity autocorrelation measurements and spontaneous FM phase locking in a multimode pulsed dye laser,” J. Opt. Soc. Am. B 3, 911 (1986). [CrossRef]
  29. D. S. King, R. R. Cavanagh, “Streak-camera analysis of XeCl- and N2-pumped dye-laser outputs,” Opt. Lett. 8, 18 (1983). [CrossRef] [PubMed]
  30. R. E. Teets, “CARS signals: phase matching, transverse modes, and optical effects,” Appl. Opt. 25, 855 (1986). [CrossRef]
  31. J. Ducuing, N. Bloembergen, “Statistical fluctuations in nonlinear optical processes,” Phys. Rev. 133, A1493 (1964). [CrossRef]
  32. A. M. Mood, Introduction to the Theory of Statistics (McGraw-Hill, New York, 1974), Chap. 5.
  33. M. Aldén, P. E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS:comparison of different techniques with emphasis on temperature accuracies,” to be submitted to Appl. Opt.
  34. L. A. Westling, M. G. Raymer, J. J. Snyder, “Single-shot spectral measurements and mode correlations in a multimode pulsed dye laser,” J. Opt. Soc. Am. B 1, 150 (1984). [CrossRef]
  35. Z. W. Li, C. Radzewicz, M. G. Raymer, “Temporal smoothing of multimode dye laser pulses,” Opt. Lett. 12, 416 (1987). [CrossRef] [PubMed]
  36. S. Kröll, D. Sandell, “A model for calculating the noise due to the stochastic nature of multimode laser radiation in nonlinear optical processes,” in Proceedings of the International Conference on Nonlinear Optics, V. J. Corcoran, ed. (Society for Optics and Quantum Electronics, McLean, Va., to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited