OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 6, Iss. 11 — Nov. 1, 1989
  • pp: 2084–2107

Optical molasses

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook  »View Author Affiliations


JOSA B, Vol. 6, Issue 11, pp. 2084-2107 (1989)
http://dx.doi.org/10.1364/JOSAB.6.002084


View Full Text Article

Acrobat PDF (3579 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a summary of the results of a simple two-level theory of Doppler cooling in optical molasses and contrast it with the recent theories of multilevel, polarization-gradient cooling. The effects of single-photon recoil and of trapping in microscopic optical potential wells are also considered. Experiments are described in which the temperature of sodium atoms released from optical molasses is measured and found to be well below the Dopplercooling limit. Measurements of the temperature dependence on many experimental parameters are found to be in good qualitative agreement with the new theories of polarization-gradient cooling.

© 1989 Optical Society of America

Citation
P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, "Optical molasses," J. Opt. Soc. Am. B 6, 2084-2107 (1989)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-6-11-2084


Sort:  Author  |  Journal  |  Reset

References

  1. T. Häsch and A. Schawlow, Opt. Commun. 13, 68 (1975).
  2. D. Wineland and H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975).
  3. D. Wineland and W. Itano, Phys. Rev. A 20, 1521 (1979).
  4. W. Itano and D. Wineland, Phys. Rev. A 25, 35 (1982).
  5. E. Purcell, Harvard University, Cambridge, Massachusetts 02138 (personal communication), cited in Ref. 3.
  6. V. Letokhov, V. Minogin and B. Pavlik, Sov. Phys. JETP 45, 698 (1977).
  7. W. Neuhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, Phys. Rev. Lett. 41, 233 (1978).
  8. J. Gordon and A. Ashkin, Phys. Rev. A 21, 1606 (1980).
  9. R. Cook, Phys. Rev. A 22, 1078 (1980).
  10. D. Wineland, R. Drullinger, and F. Walls, Phys. Rev. Lett. 40, 1639 (1978).
  11. S. Stenholm, Rev. Mod. Phys. 58, 699 (1986).
  12. A. Ashkin, Science 210, 1081 (1980).
  13. V. Letokhov and V. Minogin, Phys. Rep. 73, 1 (1981).
  14. Prog. Quantum Electron. 8(3 & 4) (1984).
  15. J. Opt. Soc. Am. B 2(11) (1985).
  16. D. Wineland, W. Itano, J. Bergquist, and J. Bollinger, eds., Trapped Ions and Laser Cooling, Natl. Bur. Stand. (U.S.) Tech Note 1086 (U.S. Government Printing Office, Washington, D.C., 1985); Trapped Ions and Laser Cooling II, Natl. Inst. Stand. Technol. Technical Note 1324 (U.S. Government Printing Office, Washington, D.C., 1988).
  17. W. Phillips and H. Metcalf, Sci. Am. 256, 50 (1987).
  18. W. Phillips, P. Gould, and P. Lett, Science 239, 877 (1988).
  19. V. Minogin and V. Letokhov, Laser Light Pressure on Atoms (Gordon & Breach, New York, 1987).
  20. A. P. Kazantsev, Phys. Rep. 129, 75 (1985).
  21. S. Chu, L. Hollberg, J. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
  22. W. Phillips, J. Prodan, and H. Metcalf, J. Opt. Soc. Am. B 2, 1751 (1985).
  23. P. Gould, P. Lett, and W. Phillips, in Laser Spectroscopy VIII, W. Persson and S. Svanberg, eds. (Springer-Verlag, Berlin, 1987), p. 64.
  24. S. Chu, M. Prentiss, A. Cable, and J. Bjorkholm, in Laser Spectroscopy VIII, W. Persson and S. Svanberg, eds. (Springer-Verlag, Berlin, 1987), p. 58.
  25. P. Lett, R. Watts, C. Westbrook, W. Phillips, P. Gould, and H. Metcalf, Phys. Rev. Lett. 61, 169 (1988).
  26. J. Dalibard, C. Salomon, A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, in Atomic Physics 11, S. Haroche, J. C. Gay, and G. Grynberg, eds. (World Scientific, Singapore, 1989), p. 199, and personal communications.
  27. S. Chu, Y. Shevy, D. Weiss and P. Ungar, in Atomic Physics 11, S. Haroche, J. C. Gay, and G. Grynberg, eds. (World Scientific, Singapore, 1989), p. 636.
  28. D. S. Weiss, E. Riis, Y. Shevy, and P. J. Ungar, and S. Chu, J. Opt. Soc. Am. B 6, 2072 (1989).
  29. J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989).
  30. J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2, 1707 (1985).
  31. V. Minogin and O. Serimaa, Opt. Commun. 30, 373 (1979).
  32. A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
  33. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).
  34. Y. Shevy, D. Weiss, P. Ungar, and S. Chu, Phys. Rev. Lett. 62, 1118 (1989).
  35. One could imagine a two-level atom achieved with a J = 0 → J = 1 transition with a magnetic field applied to split the J 7eqal; 1 levels so much that only one transition, say the 0 → 0 transition, was in resonance with the laser. Two counterpropagating waves, polarized at ±45° to the magnetic field, would both drive the twolevel transition, but they would create no standing wave in the usual sense of an intensity modulation. There would be, however, a periodic spatial variation in the coupling between the atom and the field since the local polarization from the superposition of the two waves would vary in space even though the intensity of the light would not. This variation would have the same kind of effect as would a true standing wave.
  36. J. Dalibard, Thèse de doctorat d'étatès Sciences Physique (Université de Paris, Paris, 1986).
  37. J. Javanainen, M. Kaivola, U. Nielsen, O. Poulsen, and E. Riis, J. Opt. Soc. Am. B 2, 1768 (1985);
  38. W. Ertmer, R. Blatt, J. Hall, and M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
  39. C. Salomon and J. Dalibard, C. R. Acad. Sci. Paris 306, 1319 (1988).
  40. H. Wallis and W. Ertmer, J. Phys. B 21, 2999 (1988).
  41. J. Dalibard, S. Reynaud, and C. Cohen-Tannoudji, J. Phys. B 17, 4577 (1984).
  42. A. Aspect, J. Dalibard, A. Heidmann, C. Salomon, and C. Cohen-Tannoudji, Phys. Rev. Lett. 57, 1688 (1986).
  43. R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass., 1963), Vol. I.
  44. See, for example, E. Buchwald, Ann. Phys. 66, 1 (1921).
  45. J. Dalibard, Laboratoire de Spectroscopie Hertzienne de l'Ecole Normale Supérieure 24 rue Lhomond, F-75231 Paris Cedex 05, France (personal communication); D. Weiss, E. Riis, Y. Shevy, P. Ungar, and S. Chu, J. Opt. Soc. Am. B 6, 2072 (1989); H. Metcalf, Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794 (personal communication).
  46. Y. Castin, H. Wallis, and J. Dalibard, J. Opt. Soc. Am. 6, 2046 (1989).
  47. We set ħω0 equal to the internal energy plus one recoil energy. Wineland and Itano3 use a different convention: our ω0 is equivalent to their ω0′.
  48. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Phys. Rev. Lett. 61, 826 (1988).
  49. P. Lett, P. Gould, and W. Phillips, Hyperfine Interact. 44, 335 (1988).
  50. T. Hijmans, O. Luiten, I. Setija, and J. Walraven, in Spin Polarized Quantum Systems, S. Stringari, ed. (World Scientific, Singapore, 1989), p. 275.
  51. E. Liang and C. Dermer, Opt. Commun. 65, 419 (1988).
  52. S. Chu, J. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314 (1986).
  53. C. Salomon, J. Dalibard, A. Aspect, H. Metcalf, and C. Cohen-Tannoudji, Phys. Rev. Lett. 59, 1659 (1987).
  54. P. Gould, P. Lett, P. Julienne, W. Phillips, H. Thorsheim, and J. Weiner, Phys. Rev. Lett. 60, 788 (1988).
  55. C. Tanner, B. Masterson, and C. Wieman, Opt. Lett. 13, 357 (1988).
  56. V. Balykin, V. Letokhov, Yu. Ovchinnikov, A. Sidorov, and S. Shul'ga, Opt. Lett. 13, 958 (1988).
  57. A. Anderson, M. Boshier, S. Harocke, E. Hinds, W. Jhe, and D. Meschede, in Atomic Physics 11, S. Haroche, J. C. Gay, and G. Grynberg, eds. (World Scientific, Singapore, 1989), p. 626.
  58. A. P. Kazantsev, G. Surdutovich, and V. Yakovlev, Opt. Commun. 68, 103 (1988).
  59. V. Balykin, V. Letokhov, and A. Sidorov, Pis'ma Zh. Eksp. Teor. Fiz. 40, 251 (1984) [JETP Lett. 40, 1026 (1984)]; V. Balykin, V. Letokhov, V. Minogin, Yu. Rozhdestvenskii, and A. Sidorov, Zh. Eksp. Teor. Fiz. 90, 871 (1986) [Sov. Phys. JETP 63, 508 (1986)].
  60. D. Sesko, C. Fan, and C. Wieman, J. Opt. Soc. Am. B 5, 1225 (1988).
  61. This technique was suggested to us by H. Metcalf.
  62. Y. Shevy, D. Weiss and S. Chu, in Spin Polarized Quantum Systems, S. Stringari, ed. (World Scientific, Singapore, 1989), p. 287.
  63. The analysis presented in the next two paragraphs was not used in assigning TOF temperatures in Ref. 25. Instead, we assigned an uncertainty based on our then limited knowledge of the probe effect.
  64. S. Chu, Department of Physics, Stanford University, Stanford, California 94305 (personal communication); J. Dalibard, Laboratoire de Spectroscopie Hertzienne de l'Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Paris Cedex 05, France (personal communication).
  65. A. DeMarchi, Metrologia 18, 103 (1982); R. Beausoleil and T. Hänsch, Phys. Rev. A 33, 1661 (1986). Such an experiment was recently performed by the Stanford group [M. Kasevich, E. Riis, S. Chu, and R. DeVoe, Phys. Rev. Lett. 63, 612 (1989)], using atoms from a Zeeman-assisted radiation-pressure trap but without the launch mechanism that we suggest here.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited