OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 6, Iss. 12 — Dec. 1, 1989
  • pp: 2402–2411

Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components

J. R. Murray, J. Ray Smith, R. B. Ehrlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, and R. B. Wilcox  »View Author Affiliations

JOSA B, Vol. 6, Issue 12, pp. 2402-2411 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (1558 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using 2.4-nsec pulses at 350 nm, we have observed transverse stimulated Brillouin scattering (SBS) in fused-silica optical components. Transverse SBS sets in when the product of laser fluence and growth time for the scattered optical wave exceeds ∼2.3 J nsec/cm2. An increase in laser bandwidth to 8.3 GHz suppresses SBS losses up to approximately twice the SBS threshold. We review the theory of transverse, broadband SBS and its scaling with experimental parameters.

© 1989 Optical Society of America

Original Manuscript: June 8, 1989
Manuscript Accepted: August 28, 1989
Published: December 1, 1989

J. R. Murray, J. Ray Smith, R. B. Ehrlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, "Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components," J. Opt. Soc. Am. B 6, 2402-2411 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. Emmett, A. L. Schawlow, “Transverse stimulated emission in liquids,” Phys. Rev. 170, 358–362 (1968). [CrossRef]
  2. D. Heiman, D. S. Hamilton, R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979). [CrossRef]
  3. N. S. Kurnit, J. R. Ackerhalt, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (personal communications).
  4. J. M. Eggleston, M. J. Kushner, “Stimulated Brillouin scattering parasitics in large optical windows,” Opt. Lett. 12, 410–412 (1987). [CrossRef] [PubMed]
  5. In solids there are also some weaker shear-wave Brillouin components, which we shall ignore. See the discussion in Ref. 2.
  6. W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook, F. T. Arrechi, E. O. Schulz-Dubois, eds. (North Holland, Amsterdam, 1972), Vol. 2, Chap. E2;A. Penzkofer, L. Laubereau, W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 56–140 (1979). [CrossRef]
  7. W. Rother, “Theorie der Lichtverstarkung in absorbierenden Medien,” Z. Naturforsch. 25a, 1120–1135 (1970).
  8. B. Ya. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation, Vol. 42 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1985). [CrossRef]
  9. J. Schroeder, L. G. Hwa, G. Kendall, C. S. Dumais, M. C. Shyong, D. A. Thompson, “Inelastic light scattering in halide and oxide glasses: intrinsic Brillouin linewidth and stimulated Brillouin gain,” J. Non Cryst. Solids 102, 240–249 (1988). [CrossRef]
  10. M. G. Raymer, J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981).Note that our τ is l/2Γ in this paper. [CrossRef]
  11. N. N. Zhukov, O. P. Zaskal’ko, V. V. Kuz’min, “Self-induced distributed feedback under stimulated Brillouin scattering conditions,” Sov. J. Quantum Electron. 17, 483–486 (1987). [CrossRef]
  12. S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39, 249–256 (1974).
  13. R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60–72 (1970). [CrossRef]
  14. See, for example, W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979), Eqs. (41) ff;J. M. Eggleston, R. L. Byer, “Steady-state stimulated Raman scattering with a multimode laser,” IEEE J. Quantum Electron. QE-16, 850–853 (1980). [CrossRef]
  15. G. C. Valley, “A review of stimulated Brillouin scattering excited with a broad-band pump laser,” IEEE J. Quantum Electron. QE-22, 704–712 (1986). [CrossRef]
  16. P. Narum, M. D. Skeldon, R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” IEEE J. Quantum Electron. QE-22, 2161–2167 (1986). [CrossRef]
  17. R. A. Mullen, R. C. Lind, G. C. Valley, “Observation of stimulated Brillouin scattering with a dual spectral line pump,” Opt. Commun. 63, 123–128 (1987). [CrossRef]
  18. M. L. Dlabal, J. Reintjes, R. H. Lehmberg, “Optical phase conjugation of a broad-band laser beam with stimulated Brillouin scattering,” Proc. Soc. Photo-Opt. Instrum. Eng. 739, 22–50 (1987).
  19. E. Lichtman, A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987);E. Lichtman, A. A. Friesem, R. G. Waarts, H. H. Yaffe, “Stimulated Brillouin scattering excited by two pump waves in single-mode fibers,” J. Opt. Soc. Am. B 4, 1397–1403 (1987);J. Opt. Soc. Am. B 5, 259 (1988).Note that our variable P is equivalent to two times these authors’ normalized length parameter Lch/Lcoh. [CrossRef]
  20. Y. Aoki, K. Tajima, “Stimulated Brillouin scattering in a long, single-mode fiber excited with a multimode pump laser,” J. Opt. Soc. Am. B 5, 358–363 (1988). [CrossRef]
  21. See Eq. (26) of Ref. 12. Note that our variable P is (Scr/S) in that reference.
  22. M. E. Lines, “A possible non-halide route to ultralow loss glasses,” J. Noncryst. Solids 103, 279–288 (1988). [CrossRef]
  23. W. W. Simmons, R. O. Godwin, “Nova laser fusion facility—design, engineering, and assembly overview,” Nucl. Technol/Fusion 4, 8–24 (1983).
  24. P. J. Wegner, M. A. Henesian, F. T. Marchi, D. R. Speck, “Demonstration of efficient full-aperture type I/type II third harmonic conversion on Nova,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper MF3.
  25. F. Zernicke, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).
  26. M. A. Henesian, C. D. Swift, J. R. Murray, “Stimulated rotational Raman scattering in nitrogen in long air paths,” Opt. Lett. 10, 565–567 (1985). [CrossRef] [PubMed]
  27. M. A. Duguay, J. W. Hansen, “Optical frequency shifting of a mode-locked laser beam,” IEEE J. Quantum Electron. QE-4, 477–481 (1968). [CrossRef]
  28. Calculations by D. Eimerl, M. A. Henesian, Lawrence Liver-more National Laboratory, Livermore, California 94550 (personal communication, 1988).
  29. R. C. Eckardt, J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. QE-20, 1178–1187 (1984). [CrossRef]
  30. M. D. Skeldon, T. Kessler, R. S. Craxton, S. Skupsky, W. Seka, J. M. Soures, “Efficient third harmonic generation with a broadband laser,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper WD4.
  31. W. H. Lowdwermilk, “Nd:glass laser technology for ICF research,” Fusion Technol. 15, 339–349 (1989).
  32. J. Nees, S. Williamson, G. Mourou, “100 GHz traveling-wave electro-optic phase modulator,” Appl. Phys. Lett. 54, 1962–1964 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited