OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 6, Iss. 4 — Apr. 1, 1989
  • pp: 787–796

Composite structures for the enhancement of nonlinear-optical susceptibility

A. E. Neeves and M. H. Birnboim  »View Author Affiliations

JOSA B, Vol. 6, Issue 4, pp. 787-796 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (1040 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Calculations of the nonlinear-optical behavior are developed for model composites of nanospheres with a metallic core and nonlinear shell or with a nonlinear core and metallic shell suspended in a nonlinear medium. Optical phase conjugation is shown to be enhanced from each nonlinear region because the optical field can be concentrated in both the interior and the exterior neighborhoods of the particle and magnified at the surface-mediated plasmon resonance. For the model composite with a metallic core, a limited range of resonance tunability can be achieved by adjustment of shell thickness; the frequency range is dependent on the dielectric dispersion of the metal. For the composite with a metallic shell instead of a metallic core, this restriction is reduced so that tunability from ultraviolet to infrared can be attained. Enhancement of the phase-conjugate signal is calculated for the electrostrictive mechanism dominant in the microsecond time scale and for the electronic mechanism dominant in the picosecond time scale. Calculations based on the dielectric functions for gold and for aluminum indicate that phase-conjugate reflectivity enhancements of 108 can be achieved. The imaginary components of the composite dielectric functions are shown to limit the magnitude of the field enhancement at the surface-plasmon resonance and determine the absorption and figure of merit of the composite.

© 1989 Optical Society of America

Original Manuscript: October 21, 1988
Manuscript Accepted: January 6, 1989
Published: April 1, 1989

A. E. Neeves and M. H. Birnboim, "Composite structures for the enhancement of nonlinear-optical susceptibility," J. Opt. Soc. Am. B 6, 787-796 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. K. Jain, R. C. Lind, J. Opt. Soc. Am. 73, 647 (1983). [CrossRef]
  2. P. Roussignol, D. Ricard, J. Lukasik, C. Flytzanis, J. Opt. Soc. Am. B 4, 5 (1987). [CrossRef]
  3. M. A. Kramer, W. R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986). [CrossRef] [PubMed]
  4. P. W. Smith, A. Ashkin, W. J. Tomlinson, Opt. Lett. 6, 284 (1981). [CrossRef] [PubMed]
  5. D. Rogovin, S. O. Sari, Phys. Rev. A 31, 2375 (1985). [CrossRef] [PubMed]
  6. A. E. Neeves, M. H. Birnboim, J. Opt. Soc. Am. B 5, 701 (1988). [CrossRef]
  7. D. Rogovin, Opt. News 12(9), 138 (1986).
  8. K. M. Leung, Opt. Lett. 7, 347 (1985). [CrossRef]
  9. D. Ricard, P. Roussignol, C. Flytzanis, Opt. Lett. 10, 511 (1985). [CrossRef] [PubMed]
  10. D. Ricard, in Nonlinear Optics: Materials and Devices, C. Flytzanis, J. L. Oudar, eds. (Springer-Verlag, Berlin, 1986).
  11. F. Hache, D. Ricard, C. Flytzanis, J. Opt. Soc. Am. B 3, 1647 (1986). [CrossRef]
  12. A. Wokaun, Solid State Phys. 38, 223 (1984). [CrossRef]
  13. J. W. Haus, R. Inguva, C. M. Bowden, “Effective medium theory of nonlinear ellipsoidal composites,” submitted to Phys. Rev. A.
  14. A. E. Neeves, M. H. Birnboim, in Digest of Second Topical Meeting on Microphysics of Surfaces, Beams, and Adsorbates (Optical Society of America, Washington, D.C., 1988), p. 219.
  15. A. E. Neeves, M. H. Birnboim, Opt. Lett. 13, 1087 (1988). [CrossRef] [PubMed]
  16. A. E. Neeves, M. H. Birnboim, “Composite structures for enhancement of nonlinear-optical materials over a wide frequency range. II. Metallic shell model,” submitted to Opt. Lett.
  17. J. A. A. J. Perenboom, P. Wyder, F. Meier, Phys. Rev. B 7, 173 (1981).
  18. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976).
  19. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 258.
  20. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  21. P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  22. C. G. Granqvist, in Electrical Transport and Optical Properties of Inhomogeneous Media, J. C. Garland, D. B. Tanner, eds. (American Institute of Physics, New York1978).
  23. R. W. Hellwart, Prog. Quantum Electron. 5, 1 (1977). [CrossRef]
  24. D. M. Pepper, A. Yariv, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983).
  25. J. W. Haus, N. Kalyaniwalla, R. Inguva, M. Bloemer, C. M. Bowden, J. Opt. Soc. Am. B 6, 797 (1989). [CrossRef]
  26. J. Haus, N. Kalyaniwalla, R. Ingawa, C. M. Bowden, Opt. News 13(9), 116 (1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited