OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 7, Iss. 1 — Jan. 1, 1990
  • pp: 101–107

Raman ring resonator stability in the adiabatic approximation

P. R. Peterson and A. Gavrielides  »View Author Affiliations


JOSA B, Vol. 7, Issue 1, pp. 101-107 (1990)
http://dx.doi.org/10.1364/JOSAB.7.000101


View Full Text Article

Acrobat PDF (789 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Stability in a Raman ring resonator is studied by using the adiabatic approximation. The analysis is based on far-off resonance Raman scattering in hydrogen. A medium-power approximation is employed, which is good for intensities less than 30 MW/cm2. The resulting differential equations retain their standard low-power Raman gain dependance in addition to an intensity-dependent phase. The steady-state intensity input—output behavior, as well as the linear stability analysis, is accomplished analytically without invoking the mean-field approximation. Feedback is applied to the Stokes beam, a gain situation, or to the depleted pump beam. The Stokes frequency is assumed to be perfectly tuned to the atomic and cavity resonances. It is shown that both situations are multistable and that the power-dependent phase largely determines the stability characteristics. Furthermore, we show that the negative slope branches can be stable when feedback is applied to the pump if the output pump intensity is decreasing with increasing input pump intensity.

© 1990 Optical Society of America

Citation
P. R. Peterson and A. Gavrielides, "Raman ring resonator stability in the adiabatic approximation," J. Opt. Soc. Am. B 7, 101-107 (1990)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-7-1-101

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited