OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 7, Iss. 1 — Jan. 1, 1990
  • pp: 101–107

Raman ring resonator stability in the adiabatic approximation

P. R. Peterson and A. Gavrielides  »View Author Affiliations

JOSA B, Vol. 7, Issue 1, pp. 101-107 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (789 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stability in a Raman ring resonator is studied by using the adiabatic approximation. The analysis is based on far-off resonance Raman scattering in hydrogen. A medium-power approximation is employed, which is good for intensities less than 30 MW/cm2. The resulting differential equations retain their standard low-power Raman gain dependance in addition to an intensity-dependent phase. The steady-state intensity input–output behavior, as well as the linear stability analysis, is accomplished analytically without invoking the mean-field approximation. Feedback is applied to the Stokes beam, a gain situation, or to the depleted pump beam. The Stokes frequency is assumed to be perfectly tuned to the atomic and cavity resonances. It is shown that both situations are multistable and that the power-dependent phase largely determines the stability characteristics. Furthermore, we show that the negative slope branches can be stable when feedback is applied to the pump if the output pump intensity is decreasing with increasing input pump intensity.

© 1990 Optical Society of America

Original Manuscript: June 6, 1989
Revised Manuscript: September 25, 1989
Published: January 1, 1990

P. R. Peterson and A. Gavrielides, "Raman ring resonator stability in the adiabatic approximation," J. Opt. Soc. Am. B 7, 101-107 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Carmichael, in Optical Instabilities, R. W. Boyd, M. G. Raymer, L. M. Narducci, eds. (Cambridge U. Press, Cambridge, 1986), pp. 111–128.
  2. R. Bonifacio, L. Lugiato, Lett. Nuovo Cimento 21, 510 (1978). [CrossRef]
  3. J. A. Hermann, B. V. Thompson, in Optical Bistability, C. M. Bowden, M. Ciftan, H. R. Robl, eds. (Plenum, New York, 1981), pp. 199–220;J. A. Hermann, Opt. Commun. 44, 62 (1982);J. A. Hermann, J. N. Elgin, P. L. Knight, J. Phys. B 45, 255 (1982);J. A. Hermann, D. F. Walls, Phys. Rev. A 26, 2085 (1982);J. A. Hermann, B. V. Thompson, Opt. Lett. 7, 301 (1982);J. A. Hermann, Opt. Commun. 37, 431 (1981);B. V. Thompson, J. A. Hermann, Phys. Lett. 83A, 376 (1981);J. A. Hermann, J. N. Elgin, Phys. Lett. 86A, 461 (1981). [CrossRef] [PubMed]
  4. P. Alsing, P. R. Peterson, D. A. Cardimona, A. Gavrielides, IEEE J. Quantum Electron. QE-23, 557 (1987). [CrossRef]
  5. E. Abraham, W. J. Firth, Opt. Acta 30, 1541 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited