OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 7, Iss. 1 — Jan. 1, 1990
  • pp: 35–42

Model for optical bistability in GaAs/AlGaAs Fabry—Perot étalons including diffraction, carrier diffusion, and heat conduction

Ulf Olin  »View Author Affiliations

JOSA B, Vol. 7, Issue 1, pp. 35-42 (1990)

View Full Text Article

Acrobat PDF (1024 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new model for optical bistability in layered semiconductor Fabry—Perot étalons is presented. The model accounts for diffraction, carrier diffusion, and thermal conduction. Assuming that the spot size and the thickness of the nonlinear layer are smaller than the diffusion length of the carriers, a simplified model is derived that has been used to design bistable AlGaAs étalons with improved thermal properties.

© 1990 Optical Society of America

Ulf Olin, "Model for optical bistability in GaAs/AlGaAs Fabry—Perot étalons including diffraction, carrier diffusion, and heat conduction," J. Opt. Soc. Am. B 7, 35-42 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, "Optical bistability in semiconductors," Appl. Phys. Lett. 35, 451–453 (1979).
  2. D. A. B. Miller, S. D. Smith, and A. Johnston, "Optical bistability and signal amplification in a semiconductor crystal: applications of new low-power nonlinear effects in InSb," Appl. Phys. Lett. 35, 658–660 (1979).
  3. J. L. Jewell, H. M. Gibbs, S. S. Tarng, A. C. Gossard, and W. Wiegmann, "Regenerative pulsations from an intrinsic bistable optical device," Appl. Phys. Lett. 40, 291–293 (1982).
  4. O. Sahlén, E. Masseboeuf, M. Rask, N. Nordell, and G. Landgren, "Bistable switching in nonlinear A10.06Ga0.94As étalons," Appl. Phys. Lett. 53, 1785–1787 (1988).
  5. R. Kuszelewicz, J. L. Oudar, J. C. Michel, and R. Azoulay, "Monolithic GaAs/AlAs optical bistable étalons with improved switching characteristics," Appl. Phys. Lett. 53, 2138–2140 (1988).
  6. S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, and A. Hendry, "Room temperature, visible wavelength optical bistability in ZnSe interference filters," Opt. Commun. 51, 357–362 (1984).
  7. G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, and F. Van Milligen, "Microsecond room-temperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers," Appl. Phys. Lett. 45, 1031–1033 (1984).
  8. P. L. Gourley and T. J. Drummond, "Single crystal, epitaxial multilayers of AlAs, GaAs, and AlxGal−xAs for use as optical interferometric elements," Appl. Phys. Lett. 49, 489–491 (1986).
  9. J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard and J. H. English, "GaAs-AlAs monolithic microresonator array," Appl. Phys. Lett. 51, 94–96 (1987).
  10. O. Sahlén, U. Olin, E. Masseboeuf, G. Landgren, and M. Rask, "Optical bistability and gating in metalorganic vapour phase epitaxy grown GaAs étalons operating in reflection," Appl. Phys. Lett. 50, 1559–1561 (1987).
  11. B. G. Bovard and H. A. Macleod, "Nonlinear behaviour of optical coatings subjected to intense laser irradiation," J. Modern Opt. 35, 1151–1168 (1988).
  12. E. Abraham and I. J. Ogilvy, "Heat flow in interference filters," Appl. Phys. B 42, 31–34 (1987).
  13. J. M. Halley and J. E. Midwinter, "Thermal analysis of optical elements and arrays on thick substrates with convection cooling," J. Appl. Phys. 62, 4055–4064 (1987).
  14. L. Bányai and S. W. Koch, "A simple theory for the effects of plasma screening on the optical spectra of highly excited semi-conductors," Z. Phys. B 63, 283–291 (1986).
  15. E. Masseboeuf, O. Sahlén, U. Olin, N. Nordell, M. Rask, and G. Landgren, "Low-power optical bistability in a thermally stable AlGaAs etalon," Appl. Phys. Lett. 54, 2290–2292 (1989).
  16. J. V. Moloney, "Bistable behavior of a detuned Fabry–Perot étalon with a gaussian input spatial profile under self-focusing and defocusing conditions," Opt. Acta 29, 1503–1508 (1982).
  17. D. Weaire, J. P. Kermode, and V. M. Dwyer, "The role of diffraction in dispersive optical bistability," Opt. Commun. 55, 223–228 (1985).
  18. U. Olin and O. Sahlén, "Transverse effects in switching of bistable Fabry–Perot étalons filled with a saturable medium," J. Opt. Soc. Am. B 4, 319–323 (1987).
  19. W. J. Firth, I. Galbraith, and E. M. Wright, "Diffusion effects in bistable optical arrays," in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-Verlag, Berlin, 1986), p. 193.
  20. U. Olin, "Effects of diffraction and diffusion in dispersive optical bistability in Fabry–Perot étalons," J. Opt. Soc. B 5, 20–23 (1988).
  21. D. Weaire, C. O'Carroll, and C. Wickham, "Dispersive optical bistability with diffusion: a scaling law," Europhys. Lett. 8, 25–28 (1989).
  22. A. Miller and G. Parry, "Optical bistability in semiconductors with density-dependent carrier lifetimes," Opt. Quantum Electron. 16, 339–348 (1984).
  23. F. Bloisi, L. Vicari, P. Cavaliere, S. Martellucci, J. Quartieri, P. Mormile, and G. Pierattini, "Laser induced thermal profiles in thermally and optically thin films," Appl. Phys. B 47, 67–69 (1988).
  24. W. J. Firth, I. Galbraith, and E. M. Wright, "Diffusion and diffraction in dispersive optical bistability," J. Opt. Soc. Am. B 2, 1005–1009 (1985).
  25. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  27. M. Lax, W. H. Louisell, and W. B. McKnight, "From Maxwell to paraxial wave optics," Phys. Rev. A 11, 1365–1370 (1975).
  28. U. Olin, "Calculation of resonant optical nonlinearities in semi-conductors using the theory of Bányai and Koch," Tech. Rep. 207 (Institute of Optical Research, Stockholm, 1989).
  29. C. D. Thurmond, "The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP," J. Electrochem. Soc. 122, 1133–1141 (1975).
  30. A. E. Siegman, "Quasi-fast Hankel transform," Opt. Lett. 1, 13–15 (1977).
  31. S. Penselin and A. Steudel, "Fabry–Perot Interferometerver-spiegelungen aus dielektrischen Vielfachschichten," Z. Phys. 142, 21–41 (1955).
  32. O. Sahlén, "Switching power dependence on spot size in bistable ZnS etalons," Opt. Commun. 59, 238–242 (1986).
  33. M. A. Afromowitz, "Thermal conductivity of Ga1−xAlxAs alloys," J. Appl. Phys. 44, 1292–1294 (1973).
  34. T. Yao, "Thermal properties of AlAs/GaAs superlattices," Appl. Phys. Lett. 51, 1798–1800 (1987).
  35. R. E. Fern and A. Onton, "Refractive index of AlAs," J. Appl. Phys. 42, 3499–3500 (1971).
  36. H. C. Casey, Jr., D. D. Sell, and M. B. Panish, "Refractive index of AlxGa1−xAs between 1.2 and 1.8 eV," Appl. Phys. Lett. 24, 63–65 (1974).
  37. P. Asbeck, "Self-absorption effects on the radiative lifetime in GaAs–GaAlAs double heterostructures," J. Appl. Phys. 48, 820–822 (1977).
  38. For the thermal conductivity of the cement, 0.008 W/cmK was used. Generally, commercial cements have lower thermal conductivities; see for instance, Loctite Tech. Data Sheet, "UV Curing Products" (Loctite, Hertfordshire, UK, 1984).
  39. Thermal stability for more than 100 msec, with a dielectric-coated diamond as heat sink/mirror, has been reported in a reference in J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarian, A. C. Gossard, and W. Wiegmann, "3-pJ, 82-MHz optical logic gates in a room-temperature GaAs–AlGaAs multiple-quantum-well étalon," Appl. Phys. Lett. 46, 918–920 (1985).
  40. B. S. Wherrett, D. Hutchings, and D. Russell, "Optically bistable interference filters: optimization considerations," J. Opt. Soc. Am. B 3, 351–362 (1986); A. Redondo and J. G. Beery, "Thermal conductivity in optical coatings," J. Appl. Phys. 60, 3882–3885(1986).
  41. E. Masseboeuf, "Fabrication of thermally stable optically bistable GaAs etalons," Tech. Rep. 211 (Institute of Optical Research, Stockholm, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited