OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 7, Iss. 1 — Jan. 1, 1990
  • pp: 64–72

Second-harmonic-generation measurements of the elastic constant of a molecule in a polymer matrix

M. G. Kuzyk, R. C. Moore, and L. A. King  »View Author Affiliations


JOSA B, Vol. 7, Issue 1, pp. 64-72 (1990)
http://dx.doi.org/10.1364/JOSAB.7.000064


View Full Text Article

Enhanced HTML    Acrobat PDF (1122 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for using electric-field-induced second-harmonic generation to determine microscopic elastic constants of dye-doped polymer systems is presented. This method allows for a direct measurement of the interaction between an optically nonlinear dye molecule and a surrounding optically linear host material. The bulk elastic constant determined by extrapolating the microscopic values is found to be ten times smaller than that determined through the use of a standard mechanical technique, suggesting that the physical interaction of the dye and the host is weak.

© 1990 Optical Society of America

History
Original Manuscript: May 18, 1989
Manuscript Accepted: September 11, 1989
Published: January 1, 1990

Citation
M. G. Kuzyk, R. C. Moore, and L. A. King, "Second-harmonic-generation measurements of the elastic constant of a molecule in a polymer matrix," J. Opt. Soc. Am. B 7, 64-72 (1990)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-7-1-64


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. Boyd, “Optical second-harmonic generation as an orientational probe in poled polymers,” Thin Solid Films 152, 295 (1987). [CrossRef]
  2. P. Le Barny, “Chemistry of polymer molecules for ultrathin films,” Thin Solid Films 152, 99 (1987). [CrossRef]
  3. C. S. Willand, D. J. Williams, “Nonlinear optical properties of polymeric materials,” Ber. Bunsenges. Phys. Chem. 91, 1304 (1987).
  4. S. Matsumoto, K. Kubodera, T. Kurihara, T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987). [CrossRef]
  5. R. D. Martino, D. Haas, G. Khanarian, T. Leslie, H. T. Man, J. Riggs, M. Sansone, J. Stamitoff, C. Teng, H. Yoon, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 65.
  6. A. C. Griffin, A. M. Bhatti, G. A. Howell, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 115.
  7. T. Watanabe, K. Yoshinaga, D. Fichou, Y. Chatani, S. Miyata, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 339.
  8. P. D. Calvert, B. D. Moyle, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 357.
  9. H. Uchiki, T. Kobayashi, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 373.
  10. K. D. Singer, J. E. Sohn, S. J. Lalama, “Second-harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248 (1986). [CrossRef]
  11. J. E. Sohn, K. D. Singer, M. G. Kuzyk, in Polymers for High Technology, Electronics and Photonics, M. J. Bowden, S. R. Turner, eds., ACS Symp. Ser.346 (1987).
  12. C. Ye, T. J. Marks, J. Yang, G. K. Wong, “Synthesis of molecular arrays with nonlinear optical properties. Second harmonic generation by glassy polymers,” Macromolecules 20, 2322 (1987). [CrossRef]
  13. H. L. Hampsch, J. Yang, G. K. Wong, J. M. Torkelson, “Orientation and second harmonic generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526 (1988). [CrossRef]
  14. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988). [CrossRef]
  15. J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031 (1988). [CrossRef]
  16. M. G. Kuzyk, C. W. Dirk, “Quick and simple method to measure third-order nonlinear optical properties of dye-doped polymer films,” Appl. Phys. Lett. 54, 1628 (1989). [CrossRef]
  17. K. D. Singer, M. G. Kuzyk, J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987). [CrossRef]
  18. J. D. LeGrange, M. G. Kuzyk, K. D. Singer, “Effects of order on nonlinear optical processes in organic molecular materials,” Mol. Cryst. Liq. Cryst. 150b, 567 (1987).
  19. M. G. Kuzyk, K. D. Singer, H. E. Zahn, L. A. King, “Second-order nonlinear-optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6, 742 (1989). [CrossRef]
  20. See, for example, J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  21. K. D. Singer, M. G. Kuzyk, J. E. Sohn, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 189. [CrossRef]
  22. M. Weinberg, “Shear testing of neat thermoplastic resins and their unidirectional graphite composites,” Composites 18, 386 (1987). [CrossRef]
  23. S. Iwayanagi, “On the viscoelastic properties of polymethyl methacrylate,” J. Sci. Res. Inst. Jpn. 49, 4 (1955).
  24. K. Sato, H. Nakane, T. Hideshima, S. Iwayanagi, “Creep of polymethyl methacrylate at low temperature,” J. Phys. Soc. Jpn. 9, 413 (1954). [CrossRef]
  25. M. N. Rahaman, J. Scanlan, “Non-linear viscoelastic properties of solid polymers,” Polymer 22, 673 (1981). [CrossRef]
  26. See, for example, J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).
  27. Depending on the model relating the microscopic to the macroscopic values, the appropriate factors can be of the form V, V(h/r), and V(h/r)(h/R), where (h/r) is the molecular aspect ratio and (h/R) is the ratio of the molecular length to the polymer radius of gyration. For simplicity, we use the molecular volume factor.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited