OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 7, Iss. 10 — Oct. 1, 1990
  • pp: 2006–2015

Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors

D. Grischkowsky, Søren Keiding, Martin van Exter, and Ch. Fattinger  »View Author Affiliations

JOSA B, Vol. 7, Issue 10, pp. 2006-2015 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (1242 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using the method of time-domain spectroscopy, we measure the far-infrared absorption and dispersion from 0.2 to 2 THz of the crystalline dielectrics sapphire and quartz, fused silica, and the semiconductors silicon, gallium arsenide, and germanium. For sapphire and quartz, the measured absorptions are consistent with the earlier work below 0.5 THz. Above 1 THz we measure significantly more absorption for sapphire, while for quartz our values are in reasonable agreement with those of the previous work. Our results on high-purity fused silica are consistent with those on the most transparent fused silica measured to date. For the semiconductors, we show that many of the previous measurements on silicon were dominated by the effects of carriers due to impurities. For high-resistivity, 10-kΩ cm silicon, we measure a remarkable transparency together with an exceptionally nondispersive index of refraction. For GaAs our measurements extend the precision of the previous work, and we resolve two weak absorption features at 0.4 and 0.7 THz. Our measurements on germanium demonstrate the dominant role of intrinsic carriers; the measured absorption and dispersion are well fitted by the simple Drude theory.

© 1990 Optical Society of America

Original Manuscript: March 13, 1990
Manuscript Accepted: May 8, 1990
Published: October 1, 1990

D. Grischkowsky, Søren Keiding, Martin van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. P. Cheung, D. H. Auston, “Excitation of coherent phonon polaritons with femtosecond optical pulses,” Phys. Rev. Lett. 55, 2152–2155 (1985). [CrossRef] [PubMed]
  2. K. P. Cheung, D. H. Auston, “A novel technique for measuring far-infrared absorption and dispersion,” Infrared Phys. 26, 23–27 (1986). [CrossRef]
  3. N. J. Halas, I. N. Duling, M. B. Ketchen, D. Grischkowsky, “Measured dispersion and absorption of a 5 micron coplanar transmission line,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986).
  4. M. C. Nuss, D. H. Auston, F. Capasso, “Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide,” Phys. Rev. Lett. 58, 2355–2358 (1987). [CrossRef] [PubMed]
  5. W. J. Gallagher, C.-C. Chi, I. N. Duling, D. Grischkowsky, N. J. Halas, M. B. Ketchen, A. W. Kleinsasser, “Subpicosecond optoelectronic study of resistive and superconductive transmission lines,” Appl. Phys. Lett. 50, 350–352 (1987). [CrossRef]
  6. R. Sprik, I. N. Duling, C.-C. Chi, D. Grischkowsky, “Far-infrared spectroscopy with subpicosecond electrical pulses on transmission lines,” Appl. Phys. Lett. 51, 548–550 (1987). [CrossRef]
  7. D. Grischkowsky, I. N. Duling, J. C. Chen, C.-C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59, 1663–1666 (1987). [CrossRef] [PubMed]
  8. D. Grischkowsky, C.-C. Chi, I. N. Duling, W. J. Gallagher, M. B. Ketchen, R. Sprik, “Spectroscopy with ultrashort electrical pulses,” in Laser Spectroscopy VIII, W. Persson, S. Svanberg, eds. (Springer–Verlag, New York, 1987).
  9. D. Grischkowsky, “Time-domain far-infrared spectroscopy,” in Proceedings of the Fourth International Conference on Infrared Physics, R. Kesselring, F. K. Kneubuhl, eds. (ETH, Zurich, 1988).
  10. Ch. Fattinger, D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480–1482 (1988). [CrossRef]
  11. Y. Pastol, G. Arjavalingam, J.-M. Halbout, G. V. Kopcsay, “Coherent broadband microwave spectroscopy using picosecond optoelectronic antennas,” Appl. Phys. Lett. 54, 307–309 (1989). [CrossRef]
  12. Ch. Fattinger, D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989). [CrossRef]
  13. M. van Exter, Ch. Fattinger, D. Grischkowsky, “Terahertz time-domain spectoscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989). [CrossRef]
  14. Y. Pastol, G. Arjavalingam, G. V. Kopcsay, J.-M. Halbout, “Dielectric properties of uniaxial crystals measured with optoelectronically generated microwave transient radiation,” Appl. Phys. Lett. 55, 2277–2279 (1989). [CrossRef]
  15. S. Keiding, D. Grischkowsky, “Measurements of the phase shift and reshaping of teraHz pulses due to total internal reflection,” Opt. Lett. 15, 48–50 (1990). [CrossRef] [PubMed]
  16. M. van Exter, D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56, 1694–1696 (1990); “Carrier dynamics of electrons and holes in moderately-doped silicon,” Phys. Rev. B 41, 12140–12149 (1990). [CrossRef]
  17. D. Grischkowsky, S. Keiding, “Terahertz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57, 1055–1057 (1990). [CrossRef]
  18. D. H. Auston, “Subpicosecond electro-optic Shockwaves,” Appl. Phys. Lett. 43, 713–715 (1983). [CrossRef]
  19. D. H. Auston, K. P. Cheung, J. A. Valdmanis, D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984). [CrossRef]
  20. M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling, N. J. Halas, J-M Halbout, J. A. Kash, G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986). [CrossRef]
  21. D. Grischkowsky, M. B. Ketchen, C-C. Chi, I. N. Duling, N. J. Halas, J-M. Halbout, P. G. May, “Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988). [CrossRef]
  22. A. P. DeFonzo, M. Jarwala, C. R. Lutz, “Transient response of planar integrated optoelectronic antennas,” Appl. Phys. Lett. 50, 1155–1157 (1987). [CrossRef]
  23. A. P. DeFonzo, C. R. Lutz, “Optoelectronic transmission and reception of ultrashort electrical pulses,” Appl. Phys. Lett. 51, 212–214 (1987). [CrossRef]
  24. P. R. Smith, D. H. Auston, M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988). [CrossRef]
  25. M. van Exter, Ch. Fattinger, D. Grischkowsky, “High brightness teraHz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989). [CrossRef]
  26. Ch. Fattinger, D. Grischkowsky, “A Cherenkov source for freely propagating teraHz beams,” IEEE J. Quantum Electron. 25, 2608–2610 (1989). [CrossRef]
  27. B. B. Hu, X.-C. Zhang, D. H. Auston, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990). [CrossRef]
  28. M. van Exter, D. Grischkowsky, “Characterization of an optoelectronic teraHz beam system,” IEEE Trans. Microwave Theory Tech. (to be published).
  29. C. Johnson, F. J. Low, A. W. Davidson, “Germanium and germanium-diamond bolometers operated at 4.2 K, 2.0 K, 1.2 K, 0.3 K, and 0.1 K,” Opt. Eng. 19, 255–258 (1980). [CrossRef]
  30. P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy (Wiley, New York, 1975).
  31. D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed (McGraw–Hill, New York, 1982).
  32. E. E. Russell, E. E. Bell, “Optical constants of sapphire in the far infrared,” J. Opt. Soc. Am. 57, 543–544 (1967). [CrossRef] [PubMed]
  33. E. V. Loewenstein, D. R. Smith, R. L. Morgan, “Optical constants of far infrared materials. 2: Crystalline solids,” Appl. Opt. 12, 398–406 (1973). [CrossRef] [PubMed]
  34. M. N. Afsar, “Dielectric measurements of millimeter-wave materials,” IEEE Trans. Microwave Theory Tech. MTT-32, 1598–1609 (1984). [CrossRef]
  35. E. E. Russell, E. E. Bell, “Measurement of the optical constants of crystal quartz in the far-infrared with the asymmetric Fourier-transform method,” J. Opt. Soc. Am. 57, 341–348 (1967). [CrossRef]
  36. W. F. Passchier, D. D. Honijk, M. Mandel, M. N. Afsar, “A new method for the determination of complex refractive index spectra of transparent solids in the far-infrared spectral region: results of pure silicon and crystal quartz,” J. Phys. D 10, 509–517 (1977). [CrossRef]
  37. J. M. Dutta, C. R. Jones, H. Dave, “Complex dielectric constants for selected near-millimeter-wave materials at 245 GHz,” IEEE Trans. Microwave Theory Tech. MTT-34, 932–936 (1986). [CrossRef]
  38. C. M. Randall, R. D. Rawcliffe, “Refractive indices of germanium, silicon, and fused quartz in the far-infrared,” Appl. Opt. 6, 1889–1894 (1967). [CrossRef] [PubMed]
  39. T. J. Parker, J. E. Ford, W. G. Chambers, “The optical constants of pure fused quartz in the far-infrared,” Infrared Phys. 18, 215–219 (1978). [CrossRef]
  40. R. H. Stolen, “Far-infrared absorption in high resistivity GaAs,” Appl. Phys. Lett. 15, 74–75 (1969). [CrossRef]
  41. S. Perkowitz, “Far-infrared free-carrier absorption in N-type gallium arsenide,” J. Phys. Chem. Solids 32, 2267–2274 (1971). [CrossRef]
  42. C. J. Johnson, G. H. Sherman, R. Weil, “Far infrared measurement of the dielectric properties of GaAs and CdTe at 300 K and 8 K,” Appl. Opt. 8, 1667–1671 (1969). [CrossRef] [PubMed]
  43. J. R. Birch, C. C. Bradley, M. F. Kimmitt, “Absorption and refraction in germanium at 293°K in the range 12–50 cm−1,” Infrared Phys. 14, 189–197 (1974). [CrossRef]
  44. J. R. Birch, “The absolute determination of complex reflectivity,” Infrared Phys. 18, 613–620 (1978). [CrossRef]
  45. R. H. Stolen, “Temperature dependence of far-infrared absorption in GaAs,” Phys. Rev. B 11, 767–770 (1975). [CrossRef]
  46. T. Ohba, S. Ikawa, “Far-infrared absorption of silicon crystals,” J. Appl. Phys. 64, 4141–4143 (1988). [CrossRef]
  47. K. Seeger, “Microwave dielectric constants of silicon, gallium arsenide, and quartz,” J. Appl. Phys. 63, 5439–5443 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited