OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 7, Iss. 12 — Dec. 1, 1990
  • pp: 2317–2322

Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3

M. Carrascosa and F. Agulló-López  »View Author Affiliations


JOSA B, Vol. 7, Issue 12, pp. 2317-2322 (1990)
http://dx.doi.org/10.1364/JOSAB.7.002317


View Full Text Article

Enhanced HTML    Acrobat PDF (665 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A mathematical model is developed to account for the fixing and developing behavior of holographic gratings in photorefractive materials such as LiNbO3. All transport processes for the carriers (electrons and protons) are considered. Moreover, unlike in previous studies, the thermal excitation of carriers is taken into account. Two possible experimental procedures that involve fixing during or after writing are theoretically described. The model is applied to simulate the kinetics, overall efficiency, and temperature dependence of the fixing process for LiNbO3:Fe, for which the most experimental information is available.

© 1990 Optical Society of America

History
Original Manuscript: April 30, 1990
Manuscript Accepted: July 19, 1990
Published: December 1, 1990

Citation
M. Carrascosa and F. Agulló-López, "Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3," J. Opt. Soc. Am. B 7, 2317-2322 (1990)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-7-12-2317


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989). [CrossRef]
  2. W. J. Burke, D. L. Staebler, W. Phillips, G. A. Alphonse, “Volume phase holographic storage in ferroelectric crystals,” Opt. Eng. 17, 308–316 (1978). [CrossRef]
  3. G. C. Valley, M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983). [CrossRef]
  4. J. J. Amodei, W. Phillips, D. L. Staebler, “Improved electro-optic materials and fixing techniques for holographic recording,” Appl. Opt. 11, 390–396 (1972). [CrossRef] [PubMed]
  5. D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975). [CrossRef]
  6. H. Vormann, G. Weber, S. Kapphan, E. Kratzig, “Hydrogen as origin of thermal fixing in LiNbO3,” Solid State Commun. 40, 543–545 (1981). [CrossRef]
  7. R. Sommerfeldt, R. A. Rupp, H. Vormann, E. Kratzig, “Thermal fixing of volume phase holograms in LiNbO3:Cu,” Phys. Status Solidi A 99, k15–k18 (1987). [CrossRef]
  8. R. Matull, R. A. Rupp, “Microphometric investigations of fixed holograms,” J. Phys. D 21, 1556–1565 (1988). [CrossRef]
  9. J. P. Herriau, J. P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986). [CrossRef]
  10. L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989). [CrossRef]
  11. S. W. McCahon, D. Rytz, G. C. Valley, M. V. Klein, B. A. Wechsler, “Hologram fixing in Bi12TiO20using heating and an ac electric field,” Appl. Opt. 28, 1967–1969 (1989). [CrossRef] [PubMed]
  12. W. Meyer, P. Wurfel, R. Munser, G. Muller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979). [CrossRef]
  13. M. Carrascosa, F. Agulló-López, “Kinetics for optical erasure of sinusoidal holographic gratings in photorefractive materials,” IEEE J. Quantum Elecctron. QE-22, 1369–1375 (1986). [CrossRef]
  14. P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987). [CrossRef]
  15. M. G. Clark, F. J. Disalvo, A. M. Glass, G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59, 6209–6219 (1973). [CrossRef]
  16. A. Zylberstejn, “Thermally activated trapping in Fe-doped LiNbO3,” Appl. Phys. 29, 778–780 (1976).
  17. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  18. W. Josch, R. Munser, W. Ruppel, P. Wurfel, “The photovoltaic effect and the charge transport in LiNbO3,” Ferroelectrics 21, 623–625 (1977). [CrossRef]
  19. E. Kratzig, R. Orlowski, “Light induced charge transport in doped LiNbO3and TiTaO3,” Ferroelectrics 27, 241–244 (1980). [CrossRef]
  20. W. Bollmann, “Diffusion of hydrogen (OH−ions) in LiNbO3crystals,” Phys. Status Solidi A 104, 643–648 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited