OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 8, Iss. 2 — Feb. 1, 1991
  • pp: 337–345

Laser-induced electric breakdown in water

C. A. Sacchi  »View Author Affiliations

JOSA B, Vol. 8, Issue 2, pp. 337-345 (1991)

View Full Text Article

Enhanced HTML    Acrobat PDF (1268 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dielectric breakdown induced in water by Nd: YAG laser pulses is considered experimentally and theoretically. The effect appears to be due to electron avalanche ionization. The aspects of this process considered here are the following: (i) The dependence of the breakdown probability on the laser field. At high fields, electron interaction with molecular (Raman) vibrations or with collective molecular motions occurs. (ii) Bragg scattering, which contributes to keeping the electron motion in phase with the optical field. (iii) The role of the electron mobility, which contributes to stabilizing the process. (iv) The generation of the electrons that start the avalanche in relation to different laser-pulse durations and irradiances.

© 1991 Optical Society of America

Original Manuscript: March 1, 1990
Manuscript Accepted: June 19, 1990
Published: February 1, 1991

C. A. Sacchi, "Laser-induced electric breakdown in water," J. Opt. Soc. Am. B 8, 337-345 (1991)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. De Michelis, “Laser induced gas breakdown: a bibliographical review,” IEEE J. Quantum Electron. QE-5, 188–202 (1969). [CrossRef]
  2. Yu. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–654 (1966) [Usp. Fiz. Nauk 87, 29–36 (1965)]. [CrossRef]
  3. A. J. Glass, A. H. Guenther, “Laser induced damage of optical elements—a status report,” Appl. Opt. 12, 637–649 (1973). [CrossRef] [PubMed]
  4. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974). [CrossRef]
  5. P. A. Barnes, K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13, 282–284 (1968). [CrossRef]
  6. A. Vogel, W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988). [CrossRef]
  7. D. Aron-Rosa, J. J. Aron, J. Griesemann, R. Thyzel, “Use of the neodymium:YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant. Soc. 6, 352–354 (1980). [PubMed]
  8. F. Fankhauser, P. Roussel, J. Steffen, E. Van der Zypen, A. Cherenkova, “Clinical studies on the efficiency of high power laser radiation upon some structure of the anterior segment of the human eye: first experiments of the treatment of some pathological conditions of the anterior segment of the eye by means of a Q-switched laser system,” Int. J. Ophthalmol. 3, 129–139 (1981). [CrossRef]
  9. M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser photodisruptors: damage mechanisms, instrument design and safety,” Ophthalmologica 90, 973–991 (1983).
  10. S. P. Dretler, “Laser lithotripsy: a review of 20 years of research and clinical applications,” Lasers Surg. Med. 8, 341–356 (1988). [CrossRef] [PubMed]
  11. C. A. Puliafito, R. F. Steinert, “Short pulsed Nd:YAG laser microsurgery of the eye: biophysical considerations,” IEEE J. Quantum Electron. QE-20, 1442–1448 (1984). [CrossRef]
  12. F. Docchio, L. Dossi, C. A. Sacchi, “Q-switched Nd:YAG laser irradiation of the eye and related phenomena: an experimental study. I: Optical breakdown determination for liquids and membranes,” Laser Life Sci. 1, 87–103 (1986).
  13. F. Docchio, C. A. Sacchi, J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol. 1, 83–93 (1986).
  14. M. Bass, H. H. Barrett, “Avalanche breakdown and the probabilistic nature of laser-induced damage,” IEEE J. Quantum Electron. QE-8, 338–343 (1972). [CrossRef]
  15. W. Shockley, “Problems related to P-N junctions in silicon,” Czech. J. Phys. B 11, 81–86 (1961); Solid-State Electron. 2, 35–40 (1961). [CrossRef]
  16. E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett. 19, 495–497 (1971). [CrossRef]
  17. M. Zahn, Y. Ohki, D. B. Fenneman, R. J. Grisphover, V. H. Gehman, “Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design,” Proc. IEEE 74, 1182–1220 (1986). [CrossRef]
  18. P. A. Wolff, “Theory of electron multiplication in silicon and germanium,” Phys. Rev. 95, 1415–1420 (1954). [CrossRef]
  19. G. A. Baraff, “Distribution functions and ionization rates for hot electrons in semiconductors,” Phys. Rev. 128, 2507–2517 (1962). [CrossRef]
  20. L. V. Keldysh, “Concerning the theory of impact ionization in semiconductors,” Sov. Phys. JETP 21, 1135–1144 (1965).
  21. B. K. Ridley “Lucky-drift mechanism for impact ionisation in semiconductors,” J. Phys. C 16, 3373–3388 (1983). [CrossRef]
  22. R. Seitz, “On the theory of electron multiplication in crystals,” Phys. Rev. 76, 1376–1393 (1949). [CrossRef]
  23. B. N. Brockhouse, “Structure dynamics of water by neutron spectrometry,” Nuovo Cimento Suppl. IX, 47–75 (1958).
  24. A. H. Narten, H. A. Levy, “Liquid water: molecular correlation functions from x-ray diffraction,” J. Chem. Phys. 55, 2263–2269 (1971). [CrossRef]
  25. E. Kálmán, G. Pálinkás, P. Kovács, “Liquid water. I: Electron scattering,” Mol. Phys. 34, 505–524 (1977). [CrossRef]
  26. G. Pálinkás, E. Kádlmán, P. Kovács, “Liquid water. II: Experimental atom pair-correlation functions of liquid D2O,” Mol. Phys. 34, 525–537 (1977). [CrossRef]
  27. D. Grand, A. Bernas, E. Amouyal, “Photoionization of aqueous indole; conduction band edge and energy gap in liquid water,” Chem. Phys. 44, 73–79 (1979). [CrossRef]
  28. J. W. Boyle, J. A. Ghormley, C. J. Hochanadel, J. F. Riley, “Production of hydrated electrons by flash photolysis of liquid water with light in the first continuum,” J. Phys. Chem. 73, 2886–2890 (1969). [CrossRef]
  29. Z. Cardeny, J. Tauc, “Hot-carrier thermalization in amorphous silicon,” Phys. Rev. Lett. 46, 1223–1226 (1981). [CrossRef]
  30. G. Ascarelli, “Experimental detection of collective modes in a polar liquid: application to the case of the solvated electron in H2O and NH3,” Can. J. Chem. 55, 1916–1919 (1977). [CrossRef]
  31. J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985). [PubMed]
  32. P. Krebs, “Localization of excess electrons in dense polar vapors,” J. Phys. Chem. 88, 3702–3709 (1984). [CrossRef]
  33. A. Migus, Y. Gauduel, J. L. Martin, A. Antonetti, “Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime,” Phys. Rev. Lett. 58, 1559–1562 (1987). [CrossRef] [PubMed]
  34. F. Williams, S. P. Varma, S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976). [CrossRef]
  35. A. Penzkofer, “Parametrically generated spectra and optical breakdown in H2O and NaCl,” Opt. Commun. 11, 265–269 (1974). [CrossRef]
  36. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965) [Zh. Eksp. Teor. Fiz. 47, 1945–1957 (1964)].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited