Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Excess noise in gain-guided amplifiers

Not Accessible

Your library or personal account may give you access

Abstract

A second-quantized theory of the radiation field is used to study the origin of the excess noise observed in gain-guided amplifiers. We find that the reduction of the signal-to-noise ratio is a function of the length of the amplifier, and thus the enhancement of the noise is a propagation effect arising from longitudinally inhomogeneous gain of the noise rather than from an excess of local spontaneous emission. We confirm this conclusion by showing that the microscopic rate of spontaneous emission into a given non-power-orthogonal cavity mode is not enhanced by the Petermann factor. In addition, we illustrate the difficulties associated with photon statistics for this and other open systems by showing that no acceptable family of photon-number operators corresponds to a set of non-power-orthogonal cavity modes.

© 1991 Optical Society of America

Full Article  |  PDF Article
More Like This
Gain-guiding effects in transient Raman amplifiers

Jianqiu Xu and Qihong Lou
J. Opt. Soc. Am. B 16(6) 961-965 (1999)

Excess-noise-enhanced photon-pair generation in unstable resonators

Claus Lamprecht and Helmut Ritsch
Opt. Lett. 27(9) 757-759 (2002)

Resonant excess quantum noise in focused-gain lasers

N. J. van Druten, M. P. van Exter, and J. P. Woerdman
Opt. Lett. 26(15) 1176-1178 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (65)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved