OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 9, Iss. 11 — Nov. 1, 1992
  • pp: 1962–1967

Optimization of a midinfrared high-resolution difference-frequency laser spectrometer

A. H. Hielscher, C. E. Miller, D. C. Bayard, U. Simon, K. P. Smolka, R. F. Curl, and F. K. Tittel  »View Author Affiliations

JOSA B, Vol. 9, Issue 11, pp. 1962-1967 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (711 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Improved performance of a continuous-wave (cw) laser spectrometer for Doppler-limited infrared spectroscopy of molecules based on difference-frequency generation (DFG) in AgGaS2 has been achieved. The spectrometer was configured to generate continuous scans of up to 1 cm−1 from 1550 to 2100 cm−1. An absolute precision of ∼6 × 10−3 cm−1 with a resolution of better than 1.0 MHz (3.3 × 10−5 cm−1) was achieved. Infrared powers of ∼20 μW were obtained by employing 90° Type I phase matching in a 45-mm-long AgGaS2 crystal. The high-resolution characteristics of the DFG spectrometer were evaluated by using H2O and N2O spectra. Preliminary infrared kinetic spctroscopy results involving the detection of transient CO radicals from 193-nm acetone photodissociation are also reported.

© 1992 Optical Society of America

Original Manuscript: January 31, 1992
Revised Manuscript: May 21, 1992
Published: November 1, 1992

A. H. Hielscher, C. E. Miller, D. C. Bayard, U. Simon, K. P. Smolka, R. F. Curl, and F. K. Tittel, "Optimization of a midinfrared high-resolution difference-frequency laser spectrometer," J. Opt. Soc. Am. B 9, 1962-1967 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. S. Pine, “Doppler-limited molecular spectroscopy by difference-frequency mixing,” J. Opt. Soc. Am. 64, 1683 (1974). [CrossRef]
  2. A. S. Pine, “High resolution methane ν3-band spectra using a stabilized tunable difference-frequency laser system,” J. Opt. Soc. Am. 66, 97 (1976). [CrossRef]
  3. T. Oka, “Observation of the infrared spectrum of H3+,” Phys. Rev. Lett. 45, 531 (1980). [CrossRef]
  4. H. Petek, D. J. Nesbitt, P. O. Ogilby, C. B. Moore, “Infrared flash kinetic spectroscopy: the ν1 and ν3 spectra of singlet methylene,” J. Phys. Chem. 87, 5367 (1983). [CrossRef]
  5. C. M. Lovejoy, D. J. Nesbitt, “IHigh sensitivity, high-resolution IR laser spectroscopy in slit supersonic jets: application to N2HF ν1 and ν5 + ν1−ν5I” J. Chem. Phys. 86, 3151 (1987). [CrossRef]
  6. D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H v1 band,” in Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, A. Mooradian, eds. (Academic, New York, 1989), p. 126.
  7. A. G. Cartlidge, D. D. Arnone, R. J. Butcher, W. A. Phillips, “High-resolution study of molecular adsorbates in the near-infrared by difference-frequency generation,” J. Mod. Opt. 37, 729 (1990). [CrossRef]
  8. M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+” J. Chem. Phys. 93, 6200 (1990). [CrossRef]
  9. P. F. Bernath, “High resolution infrared spectroscopy of transient molecules,” Ann. Rev. Phys. Chem. 41, 123 (1990). [CrossRef]
  10. C. B. Dane, D. R. Lander, R. F. Curl, F. K. Tittel, Y. Guo, M. I. F. Ochsner, C. B. Moore, “Infrared flash kinetic spectroscopy of HCO,” J. Chem. Phys. 88, 2121 (1988). [CrossRef]
  11. P. Canarelli, Z. Benko, R. F. Curl, F. K. Tittel, “A continuous wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992). [CrossRef]
  12. J. L. Hall, S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976). [CrossRef]
  13. G. D. Boyd, H. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurements of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971). [CrossRef]
  14. C. A. Schwartz, D. S. Chemla, B. Ayrault, “Direct measurement of the birefringence of AgGaS2,” Opt. Commun. 5, 244 (1972). [CrossRef]
  15. G. C. Bhar, R. C. Smith, “Silver thiogallate (AgGaS2) – Part II: Linear optical properties,” IEEE J. Quantum Electron. QE-10, 546 (1974). [CrossRef]
  16. G. C. Bhar, “Refractive index interpolation in phase-matching,” Appl. Opt. 15, 305 (1976). [CrossRef]
  17. T. Itabe, J. L. Bufton, “Phase-matching measurements for 10 mm upconversion in AgGaS2” Appl. Opt. 23, 3044 (1984). [CrossRef] [PubMed]
  18. Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984). [CrossRef]
  19. T. B. Chu, M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523 (1985). [CrossRef]
  20. K. Kato, “High-power difference frequency generation at 5 – 11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984). [CrossRef]
  21. A. G. Yodh, H. W. K. Tom, G. D. Aumiller, R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991). [CrossRef]
  22. P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 55, 1 (1992).
  23. G. Guelachvili, N. K. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).
  24. J. S. Wells, D. A. Jennings, A. Hinz, J. S. Murray, A. G. Maki, “Heterodyne frequency measurements on N2O at 5.3 and 9.0 μm,” J. Opt. Soc. Am. B 2, 857 (1985). [CrossRef]
  25. K. A. Trentelman, S. H. Kable, D. B. Moss, P. L. Houston, “Photodissociation dynamics of acetone at 193 nm: photofragment internal and translational energy distributions,” J. Chem. Phys. 91, 7498 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited