OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 9, Iss. 2 — Feb. 1, 1992
  • pp: 197–202

Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy

P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel  »View Author Affiliations


JOSA B, Vol. 9, Issue 2, pp. 197-202 (1992)
http://dx.doi.org/10.1364/JOSAB.9.000197


View Full Text Article

Enhanced HTML    Acrobat PDF (758 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high-resolution cw spectrometer based on difference frequency generation (DFG) in a 20-mm-long AgGaS2 crystal pumped by two stabilized single-frequency cw dye–Ti:sapphire lasers is described. Experiments performed with a Rhodamine 6G and DCM dye laser combination pumped by a 20-W argon laser are reported. Informed radiation is generated from 7 to 9 μm with an ultranarrow linewidth (<0.5 MHz) and an output power 1 μW by making use of 90° type I phase matching. The performance of the DFG laser spectrometer is evaluated by using a portion of the ν2 band of NH3 near 1177 cm−1.

© 1992 Optical Society of America

History
Original Manuscript: May 7, 1991
Revised Manuscript: September 26, 1991
Published: February 1, 1992

Citation
P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, "Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy," J. Opt. Soc. Am. B 9, 197-202 (1992)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-9-2-197


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kato, “High-power difference frequency generation at 5–11 μ m in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984). [CrossRef]
  2. D. S. Bethune, A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μ m,” Appl. Phys. B 40, 107 (1986). [CrossRef]
  3. P. Mutin, J. P. Boquillon, “Very narrow-bandwidth tunable infrared difference frequency generation with injection-locked dye lasers,” Appl. Phys. B 48, 411 (1989). [CrossRef]
  4. A. S. Pine, “Doppler-limited molecular spectroscopy by difference frequency mixing,” J. Opt. Soc. Am. 64, 1683 (1974); “High-resolution methane ν3-band spectra using a stabilized tunable difference-frequency laser system,” J. Opt. Soc. Am. 66, 97 (1976). [CrossRef]
  5. D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H ν1band,” Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, A. Mooradian, eds. (Academic, New York, 1989), p. 126.
  6. C. M. Lovejoy, D. J. Nesbitt, P. O. Ogilby, C. D. Moore, “Infrared flash kinetic spectroscopy. The ν1and ν3spectra of singlet methylene,” J. Chem. Phys. 86, 3151 (1987). [CrossRef]
  7. B. Wellegehausen, D. Friede, H. Vogt, S. Shaldin, “Generation of tunable cw infrared radiation by difference frequency mixing,” Appl. Phys. 11, 363 (1976). [CrossRef]
  8. M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200 (1990). [CrossRef]
  9. R. S. Feigelson, R. K. Route, “Recent developments in growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113 (1987). [CrossRef]
  10. D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971). [CrossRef]
  11. G. D. Boyd, H. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971). [CrossRef]
  12. D. C. Hanna, V. V. Rampal, R. C. Smith, “Tunable infrared down-conversion in silver thiogallate,” Opt. Commun. 8, 151 (1973). [CrossRef]
  13. R. J. Seymour, F. Zernike, “Infrared radiation tunable from 5.5 to 18.3 μ m generated by mixing in AgGaS2,” Appl. Phys. Lett. 29, 705 (1976). [CrossRef]
  14. T. Elsaesser, H. Lobentanzer, A. Seilmeier, “Generation of tunable picosecond pulses in the medium infrared by down-conversion in AgGaS2,” Opt. Commun. 52, 355 (1985). [CrossRef]
  15. A. G. Yodh, H. W. K. Tom, G. D. Aumiller, R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991). [CrossRef]
  16. Y.-X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984). [CrossRef]
  17. R. L. Byer, R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, V. R. Shen, ed. (Springer-Verlag, New York, 1977), p. 81. [CrossRef]
  18. T.-B. Chu, M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523 (1985). [CrossRef]
  19. J. L. Hall, S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976). [CrossRef]
  20. P. Canarelli, Z. Benko, A. Hielscher, R. Curl, F. K. Tittel, “Measurement of nonlinar coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 1 (1992). [CrossRef]
  21. G. Guelachvili, R. K. Narahari, Handbook of Infrared Standards (Academic, New York, 1986).
  22. C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, Orlando, Fla., 1955), Table 13-3, p. 362.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited