OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 9, Iss. 2 — Feb. 1, 1992
  • pp: 214–222

Model predicting the temperature dependence of the gain coefficient and the extractable stored energy density in Nd:phosphate glass lasers

A. C. Erlandson, G. F. Albrecht, and S. E. Stokowski  »View Author Affiliations

JOSA B, Vol. 9, Issue 2, pp. 214-222 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (1078 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have constructed a model that will be useful in designing Nd: phosphate glass lasers that are heated when run repetitively, continuously, or in the burst mode. The model predicts the temperature dependence of the gain coefficient and the extractable stored energy density. Changes in the populations of the upper and lower laser levels are described by Boltzmann distributions. The generalized Einstein relations are used to relate the stimulated-emission and absorption cross sections. Variations of the cross sections with temperature have been inferred from measurements of the threshold energies of a flash-lamp-pumped rod oscillator, over the range 288 to 365 K. With only a single input of the gain coefficient at one temperature, our model predicts the gain coefficient and the extractable stored energy density at other temperatures.

© 1992 Optical Society of America

Original Manuscript: March 19, 1991
Revised Manuscript: August 16, 1991
Published: February 1, 1992

A. C. Erlandson, S. E. Stokowski, and G. F. Albrecht, "Model predicting the temperature dependence of the gain coefficient and the extractable stored energy density in Nd:phosphate glass lasers," J. Opt. Soc. Am. B 9, 214-222 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. Emmett, W. F. Krupke, W. R. Sooy, “The potential of high-average power solid state lasers,” UCRL-53571 (Lawrence Livermore National Laboratory, Livermore, Calif., 1984).
  2. W. F. Krupke, “Solid state laser driver for an ICF reactor,” Fusion Technol. 15, 377 (1989).
  3. S. B. Sutton, G. F. Albrecht, H. F. Robey, “Heat removal and optical distortion in a gas cooled disk amplifier,” J. Am. Inst. Aeronaut Astronaut. (to be published).
  4. G. F. Albrecht, S. B. Sutton, H. F. Robey, B. L. Freitas, “Flow, heat transfer and wafefast distortion in a gas cooled disk amplifier,” in High Power and Solid State Lasers II, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1040, 37 (1989). [CrossRef]
  5. H. F. Robey, G. F. Albrecht, B. L. Freitas, “Flow conditioning for improved optical propagation of beams through regions bounded by surfaces of high solidity,” J. Appl. Phys. 69, 1915 (1991). [CrossRef]
  6. G. F. Albrecht, H. F. Robey, A. C. Erlandson, “Optical properties of turbulent channel flow,” Appl. Opt. 29, 3079 (1990). [CrossRef] [PubMed]
  7. V. A. Alekseeva, I. F. Balashov, S. I. Khankov, “Temperature dependence of the gain coefficient of phosphate-neodymium glass,” Sov. J. Opt. Technol. 49, 739 (1982).
  8. V. A. Buchenkov, I. B. Vitrishelak, V. G. Evdokimova, L. N. Soms, A. F. Stepanov, V. K. Stupnikov, “Temperature dependence of giant pulse amplification in YAG:Nd3+,” Sov. J. Quantum Electron. 11, 702 (1981). [CrossRef]
  9. V. A. Berenberg, V. A. Buchenkov, V. L. Evstigneev, V. G. Ostroumov, V. A. Smirnov, I. A. Shcherbakov, “Temperature dependance of the gain and of the lasing cross section of a ~1.06μ m transition in gadolinium scandium gallium garnet crystal doped with chromium and neodymium” Sov. J. Quantum Electron. 16, 1456 (1986). [CrossRef]
  10. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954 (1969).
  11. C. Brecker, L. A. Riseberg, M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 18, 5799 (1978). [CrossRef]
  12. S. E. Stokowski, R. A. Saroyan, M. J. Weber, “Nd-doped laser glass spectroscopic and physical properties,” M-095 (Lawrence Livermore National Laboratory, Livermore, Calif., 1978).
  13. J. M. Pellegrino, W. M. Yen, M. J. Weber, “Composition dependence of Nd homogenous linewidth in glasses,” J. Appl. Phys. 51, 6332 (1980). [CrossRef]
  14. Multiphonon decay rates for excited rare-earth ions are generally predicted by an exponential gap law. See L. A. Riseberg, M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1976), Vol. XIV, p. 91; C. B. Layne, W. H. Lowdermilk, M. J. Weber, “Nonradiative relaxation of rare-earth ions in silicate laser glass,” IEEE J. Quantum Electron. QE-11, 798 (1975). [CrossRef]
  15. Recently the multiphonon decay rates for excited Nd3+ions were found to exceed the rates predicted by the exponential gap law (see Refs. 14 and 15) by as many as 3 orders of magnitude. See L. L. Chase, Lawrence Livermore National Laboratory, Livermore, Calif. (personal communication) and Refs. 16 and 17.
  16. T. T. Basiev, A. Yu. Dergachev, E. O. Kirpichenkova, Yu. V. Orvlovski, V. V. Osiko, “Direct measurement of nonradiative relaxation and luminescence spectra from the 4G7/2, 4G5/2, +2G7/2, and 4F9/2levels of Nd3+ions in LaF3, SrF2and YAlO3laser crystals,” Sov. J. Quantum Electron. 17, 1289 (1987). [CrossRef]
  17. T. T. Basiev, A. Y. Dergachev, Y. V. Orlovski, S. Georgeschu, A. Lupei, “Nonradiative multiphonon relaxation and energy transfer from the strongly quenched high-lying levels on Nd3+ ions in laser crystals,” in Digest of the Topical Meeting on Tunable Solid State Lasers (Optical Society of America, Washington, D.C., 1989).
  18. J. R. Thornton, W. D. Fountain, G. W. Flint, T. G. Crow, “Properties of neodymium laser materials,” Appl. Opt. 8, 1087 (1969). [CrossRef] [PubMed]
  19. D. W. Hall, R. A. Haas, W. R. Krupke, M. J. Weber, “Spectral and polarization hole burning in neodymium glass lasers,” IEEE J. Quantum Electron. QE-19, 1716 (1983).
  20. M. M. Mann, L. G. DeShazer, “Energy levels and spectral broadening of neodymium ions in laser glass,” J. Appl. Phys. 41, 2951 (1970). [CrossRef]
  21. D. Findlay, R. A. Clay, “Model predicting the temperature dependence of the gain coefficient and the extractable stored energy density in Nd:phosphorus glass lasers,” Phys. Lett. 20, 277 (1966). [CrossRef]
  22. S. Timoshenko, J. M. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951), p. 400.
  23. J. A. Glaze, S. Guch, J. B. Trenholme, “Parasitic suppression in large-aperture Nd:glass disk laser amplifiers,” Appl. Opt. 13, 2808 (1974). [CrossRef] [PubMed]
  24. L. E. Ageeva, N. B. Brachouskaya, G. S. Lunter, A. K. Przhevuskii, M. N. Tolstoi, “Determination of the stimulated emission cross section of neodymium glasses by measurement of the absorption from the thermally populated 4I11/2levels,” Sov. J. Quantum Electron. 7, 1379 (1977). [CrossRef]
  25. J. A. Caird, A. J. Ramponi, P. R. Staver, “Quantun efficiency and excited-state relaxation dynamics in neodymium-doped phosphate glasses,” J. Opt. Soc. Am. B 8, 1391 (1991). [CrossRef]
  26. W. E. Martin, D. Milam, “Gain saturation in Nd:doped laser materials,” IEEE J. Quantum Electron. QE-18, 1155 (1982). [CrossRef]
  27. L. M. Frantz, J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346, (1963). [CrossRef]
  28. A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited