OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 9, Iss. 2 — Feb. 1, 1992
  • pp: 251–260

Transverse instability in a nonlinear waveguide. II. Saturation and steady state

B. D. Robert and J. E. Sipe  »View Author Affiliations

JOSA B, Vol. 9, Issue 2, pp. 251-260 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (1264 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider a laser that is incident normally upon a planar waveguide with a Kerr nonlinearity. In a previous paper [ J. Opt. Soc. Am. 8, 786 ( 1991)] we demonstrated that the waveguide fields can participate in a transverse instability of the incident beam. We examine the evolution of this instability, show that the system evolves to a steady-state pattern, and develop a general instability criterion.

© 1992 Optical Society of America

Original Manuscript: November 27, 1990
Revised Manuscript: August 21, 1991
Published: February 1, 1992

B. D. Robert and J. E. Sipe, "Transverse instability in a nonlinear waveguide. II. Saturation and steady state," J. Opt. Soc. Am. B 9, 251-260 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, e.g., feature on transverse effects in nonlinear-optical systems, N. B. Abraham, W. J. Firth, eds., J. Opt. Soc. Am. B 7, 947–1157, 1259–1373 (1990).
  2. E.g., K. Dworschak, J. E. Sipe, H. M. van Driel, “Solid–melt patterns induced on silicon by a continuous laser beam at nonnormal incidence,” J. Opt. Soc. Am. B 7, 981–989 (1990); J. V. Moloney, H. Adachihara, R. Indik, C. Lizarraga, R. Northcutt, D. W. McLaughlin, A. C. Newell, “Modulation-induced optical pattern formation in a passive optical-feedback system,” J. Opt. Soc. Am. B 7, 1039–1044 (1990). [CrossRef]
  3. E.g., F. Hollinger, Chr. Jung, H. Weber, “Simple mathematical model describing multitransversal solid-state lasers,” J. Opt. Soc. Am. B 7, 1013–1018 (1990). [CrossRef]
  4. E.g., M. Dagenais, H. G. Winful, “Low transverse optical bistability near bound excitons in cadmium sulfide,” Appl. Phys. Lett. 44, 574–576 (1984); Chr. Tamm, C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” J. Opt. Soc. Am. B 7, 1034–1038 (1990). [CrossRef]
  5. B. D. Robert, J. E. Sipe, “Transverse instability in a nonlinear waveguide. I. Linear analysis,” J. Opt. Soc. Am. B 8, 786–796 (1991). We take this opportunity to correct an error in that paper: In all equations from Eq. (3.4) onward any occurrences of ω, the detuning between the waveguide field and the incident beam, should be replaced by ω/vg, where vg= 1/(dκ/dω) is the group velocity of the waveguide mode. This holds for both the real and the imaginary parts ω. [CrossRef]
  6. H. Goldstein, Classical Mechanics (Addison-Wesley, New York, 1981).
  7. J. H. Marburger, J. F. Lam, “Nonlinear theory of degenerate four-wave mixing,” Appl. Phys. Lett. 34, 389–391 (1979). [CrossRef]
  8. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
  9. E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I (Springer-Verlag, Berlin, 1987).
  10. K. Dekker, J. G. Verwer, Stability of Runge–Kutte Methods for Nonstiff Nonlinear Equations (North-Holland, Amsterdam, 1984).
  11. C. M. de Sterke, K. R. Jackson, B. D. Robert, “Nonlinear coupled-mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–412, (1991). [CrossRef]
  12. R. A. Fisher, ed., Optical Phase Conjugation (Academic, New York, 1983); B. T. Zel’dovich, N. F. Pipiletsky, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, New York, 1983).
  13. C. M. de Sterke, J. E. Sipe, “Switching behavior of finite periodic nonlinear media,” Phys. Rev. A 42, 2858–2869 (1990). [CrossRef] [PubMed]
  14. T. J. Karr, J. R. Morris, D. H. Chambers, J. A. Viecelli, P. G. Cramer, “Perturbation growth by thermal blooming in turbulence,” J. Opt. Soc. Am. B 7, 1103–1124 (1990); M. D. Fiet, J. A. Fleck, “Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams,” J. Opt. Soc. Am. B 5, 633–640 (1988). [CrossRef]
  15. A. L. Gaeta, R. W. Boyd, J. R. Ackerhalt, P. W. Milonni, “Instabilities and chaos in the polarization of counterpropagating light fields,” Phys. Rev. Lett. 58, 2432–2435 (1987). [CrossRef] [PubMed]
  16. W. J. Firth, C. Paré, “Transverse modulation instabilities for counterpropagating beams in Kerr media,” Opt. Lett. 13, 1096–1098 (1988). [CrossRef] [PubMed]
  17. Y. Silberberg, I. Bar Joseph, “Instabilities, self-oscillation, and chaos in a simple nonlinear interaction,” Phys. Rev. Lett. 48, 1541–1543 (1982); I. Bar-Joseph, Y. Silberberg, “The mechanism of instabilities in an optical cavity,” Opt. Commun. 48, 53–56 (1983). [CrossRef]
  18. C. T. Law, A. E. Kaplan, “Dispersion-related multimode instabilities and self-sustained oscillations in nonlinear counterpropagating waves,” Opt. Lett. 14, 734–736 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited