OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 9, Iss. 6 — Jun. 1, 1992
  • pp: 998–1005

Theoretical study of the recording density limit of photochemical hole-burning memory

Norio Murase, Kazuyuki Horie, Motoyasu Terao, and Masahiro Ojima  »View Author Affiliations


JOSA B, Vol. 9, Issue 6, pp. 998-1005 (1992)
http://dx.doi.org/10.1364/JOSAB.9.000998


View Full Text Article

Enhanced HTML    Acrobat PDF (1100 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To clarify the potential of photochemical hole-burning memory systems, we study the theoretical recording-density limit of such systems. Shot noise and material noise are considered the principal noises. Material noise originates in fluctuations in the chromophore concentration. The recording-density limit proves to be proportional to (multiplicity)1/2 × (chromophore concentration)1/2 × (hole depth), approximately. It becomes clear that the recording spot diameter can be optimized to maximize the recording density. A molar extinction coefficient for a chromophore can be also optimized, and its value is ∼105 L/(mol cm) under the conditions of a 0.2 hole depth, 1000 multiplicity, and 10−2 mol/L choromophore concentration. When the readout time is 10 ns/bit and the signal-to-noise ratio is 20, in addition to the above conditions, the recording-density limit is calculated to be 26 Gbits/cm2. For this readout time the optimal recording spot diameter is ∼2 μm. When the readout time is less than ∼10 ns/bit, shot noise becomes the dominant noise; when the readout time is more than ∼50 ns/bit, the recording-density limit increases, and the influence of material noise becomes prominent.

© 1992 Optical Society of America

History
Original Manuscript: October 11, 1991
Published: June 1, 1992

Citation
Norio Murase, Kazuyuki Horie, Motoyasu Terao, and Masahiro Ojima, "Theoretical study of the recording density limit of photochemical hole-burning memory," J. Opt. Soc. Am. B 9, 998-1005 (1992)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-9-6-998


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Maeda, A. Saitoo, H. Sugiyama, S. Arai, K. Shigematsu, “High speed, large capacity optical disk using pit-edge recording and the MCAV method,” Trans. Inst. Electron. Inform. Commun. Eng. Lett. E74, 951 (1991).
  2. G. Bouwhuis, J. H. M. Spruit, “Optical storage read-out of nonlinear disks,” Appl. Opt. 29, 3766 (1990). [CrossRef] [PubMed]
  3. M. Ohta, A. Fukumoto, K. Aratani, M. Kaneko, K. Watanabe, “Read out mechanism of magnetically induced super resolution,” in Proceedings of the Magneto-Optical Recording International Symposium ’91 (Magnetics Society of Japan, Tokyo, 1991), abstract 18-I-06.
  4. C. Tsang, “Design and performance considerations in high areal density longitudinal recording,” J. Appl. Phys. 69, 5393 (1991). [CrossRef]
  5. M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.
  6. G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent4,101,976 (July18, 1978).
  7. W. E. Moerner, ed., Persistent Spectral Hole Burning: Science and Applications (Springer-Verlag, Berlin, 1988). [CrossRef]
  8. K. Sakoda, K. Kominami, M. Iwamoto, “High temperature photochemical hole burning of tetrasodium 5, 10, 15, 20-tetra(4-sulfonato-phenyl)porphin in polyvinyl alcohol,” Jpn. J. Appl. Phys. 27, L1304 (1988). [CrossRef]
  9. A. Furusawa, K. Horie, K. Kuroki, I. Mita, “Photochemical hole burning of tetraphenylporphin in phenoxy resin at 4.2–80 K,” J. Appl. Phys. 66, 6041 (1989). [CrossRef]
  10. A. Furusawa, K. Horie, “High-temperature photochemical hole burning and laser-induced hole filling in dye-doped polymer systems,” J. Chem. Phys. 94, 80 (1991). [CrossRef]
  11. C. von Borczyskowski, B. Prass, D. Stehik, “Hole burning and luminescence spectroscopy of the site distribution and photoinduced reorientation of dihydrophenazine in single crystal matrices,” J. Chem. Phys. 92, 1581 (1990). [CrossRef]
  12. M. Yoshimura, M. Maeda, T. Nakayama, “Photochemical hole burning of anthraquinone derivatives in acrylic polymers,” Chem. Phys. Lett. 143, 342 (1988). [CrossRef]
  13. W. E. Moerner, M. D. Levenson, “Can single-photon processes provide useful materials for frequency-domain optical storage?” J. Opt. Soc. Am. B 2, 915 (1985). [CrossRef]
  14. W. Lenth, W. E. Moerner, “Gated spectral hole-burning for frequency domain optical storage,” Opt. Commun. 58, 249 (1986). [CrossRef]
  15. S. Völker, “Optical linewidth and dephasing of organic amorphous and semi-crystalline solids,” J. Lumin. 36, 251 (1987). [CrossRef]
  16. M. Romagnoli, W. E. Moerner, F. M. Schellenberg, M. D. Levenson, G. C. Bjorklund, “Beyond the bottleneck: submicrosecond hole burning in phthalocyanine,” J. Opt. Soc. Am. B 1, 341 (1984). [CrossRef]
  17. N. Murase, M. Terao, K. Horie, “Information recording and readout methods in photochemical hole burning memory,” Japan Patent Heisei3-123614 (May28, 1991).
  18. T. P. Carter, C. Bräuchle, V. Y. Lee, M. Maravi, W. E. Moerner, “Mechanism of photon-gated persistent spectral hole burning in metal–tetrabenzoporphyrin/halomethane systems: donor–acceptor electron transfer,” J. Phys. Chem. 91, 3998 (1987). [CrossRef]
  19. W. E. Moerner, T. P. Carter, C. Bräuchle, “Fast burning of persistent spectral holes in small laser spots using photon-gated materials,” Appl. Phys. Lett. 50, 430 (1987). [CrossRef]
  20. S. Machida, K. Horie, T. Yamashita, “Photon-gated photochemical hole burning by two-color sensitization of a photoreactive polymer via triplet–triple energy transfer,” Appl. Phys. Lett. 60, 286 (1992). [CrossRef]
  21. T. Shimizu, “New spectroscopy and applications (7) Saturation spectroscopy,” Bunko Kenkyu 28, 41 (1979). [CrossRef]
  22. Y. Sakakibara, H. Takahashi, T. Tani, “Photochemical hole-burning of Quinizarin-cyclodextrin included in LB-film,” in Photochemical Processes in Organized Molecular Systems, Memorial symposium for Prof. Sigeo Tazuke (1990), p. 139.
  23. H. Suzuki, T. Shimada, T. Nishi, H. Hiratsuka, “Photochemical hole burning in highly doped TPP/PMMA systems. Energy migration and stabilization of burnt holes for subsequent hole-burnings,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 251 (1989).
  24. P. J. von der Zaag, J. P. Galaup, S. Völker, “In search of spectral diffusion in glasses. A time-resolved transient hole-burning study of porphins in polyethylene,” Chem. Phys. Lett. 166, 263 (1990), and references therein. [CrossRef]
  25. H. Miyamoto, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185, Japan (personal communication, 1991).
  26. R. G. DeVoe, R. G. Brewer, “Experimental test of the optical Bloch equations for solids,” Phys. Rev. Lett. 50, 1269 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited