OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 9, Iss. 7 — Jul. 1, 1992
  • pp: 1100–1109

Nonlinear optical properties of carbon-black suspensions (ink)

Kamjou Mansour, M. J. Soileau, and E. W. Van Stryland  »View Author Affiliations


JOSA B, Vol. 9, Issue 7, pp. 1100-1109 (1992)
http://dx.doi.org/10.1364/JOSAB.9.001100


View Full Text Article

Enhanced HTML    Acrobat PDF (1299 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We performed a series of experiments on suspensions of carbon particles in liquids (ink) and carbon particles deposited on glass to determine the mechanisms for the observed optical-limiting behavior. Both materials show reduced transmittance for increasing fluence (energy per unit area). We found that nonlinear scattering dominates the transmissive losses and that the limiting is fluence dependent, so that limiters based on black ink are effective for nanosecond pulses but not for picosecond pulses. Additionally, the nonlinear scattering and the limiting behavior cease after repeated irradiation. For the liquid, flowing eliminates this effect. All the data obtained are consistent with a model of direct heating of the microscopic-sized carbon particles by linear absorption with subsequent optical breakdown initiated by thermally ionized carriers. A simple calculation gives temperatures higher than the sublimation temperature at the onset of limiting. Emission spectra measurements show singly ionized carbon emission lines with a hot blackbody background emission consistent with temperatures of ≃4000 K. A rapid expansion of the microscopic plasmas generated by the breakdown will effectively scatter further input light. Indeed, in time-resolved experiments the trailing portion of the pulse is most heavily scattered. The time-resolved transmittance of a weak cw probe beam also follows the temporal dependence of the singly ionized carbon emission (≃102 ns). We directly monitored the expansion of the scattering centers by angularly resolving the scattered light for different input fluences and fitting to Mie scattering theory. Since the carbon is black and the microplasmas are initiated by linear absorption, the limiting is extremely broadband. Within the context of this model we discuss the limitations and optimization of ink-based optical limiters.

© 1992 Optical Society of America

History
Original Manuscript: August 6, 1991
Revised Manuscript: March 2, 1992
Published: July 1, 1992

Citation
Kamjou Mansour, M. J. Soileau, and E. W. Van Stryland, "Nonlinear optical properties of carbon-black suspensions (ink)," J. Opt. Soc. Am. B 9, 1100-1109 (1992)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-9-7-1100

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited