OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 9, Iss. 8 — Aug. 1, 1992
  • pp: 1386–1393

Statistical wave-theoretical derivation of the free-space transport equation of radiometry

Ari T. Friberg, Girish S. Agarwal, John T. Foley, and Emil Wolf  »View Author Affiliations


JOSA B, Vol. 9, Issue 8, pp. 1386-1393 (1992)
http://dx.doi.org/10.1364/JOSAB.9.001386


View Full Text Article

Acrobat PDF (759 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We are concerned with the derivation of the free-space form of the radiative transfer equation of traditional radiometry from statistical wave theory. It is shown that this equation governs the transport of all the generalized radiance functions of a wide class, for any field that is generated by a planar, secondary, quasihomogeneous source, in the asymptotic limit as the wave number k = 2π/λ → ∞.

© 1992 Optical Society of America

Citation
Ari T. Friberg, Girish S. Agarwal, John T. Foley, and Emil Wolf, "Statistical wave-theoretical derivation of the free-space transport equation of radiometry," J. Opt. Soc. Am. B 9, 1386-1393 (1992)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-9-8-1386


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Walther, J. Opt. Soc. Am. 58, 1256 (1968).
  2. A. Walther, J. Opt. Soc. Am. 63, 1622 (1973).
  3. E. W. Marchand and E. Wolf, J. Opt. Soc. Am. 64, 1219 (1974).
  4. E. Wolf, J. Opt. Soc. Am. 68, 6 (1978).
  5. G. S. Agarwal, J. T. Foley, and E. Wolf, Opt. Commun. 62, 67 (1987).
  6. W. H. Cartor and E. Wolf, J. Opt. Soc. Am. 67, 786 (1977).
  7. E. Wolf, J. Opt. Soc. Am. 72, 343 (1982).
  8. Equation (2.5) is equivalent to requiring that B(r, s, v) obey the free-space equation of radiative transfer: s ∇B(r,s,v) = 0.
  9. W(0)(ρ, s, v) was introduced in Ref. 1. ℬW(0)(ρ s, v) is the complex version of the generalized radiance function introduced in Ref. 2; in that paper the real part of ℬW(0)(ρ, s, v) was used.
  10. A. T. Friberg, "Phase-space methods for partially coherent wavefields," in Optics in Four Dimensions—1980, M. Machado and L. M. Narducci, eds., AIP Conf. Proc. 65, 313 (1981).
  11. A. T. Friberg, J. Opt. Soc. Am. 69, 192 (1979).
  12. J. T. Foley and E. Wolf, Opt. Commun. 55, 236 (1985).
  13. K. Kim and E. Wolf, J. Opt. Soc. Am. A 4, 1233 (1987).
  14. G. S. Agarwal and E. Wolf, Phys. Rev. D 2, 2161, 2187, 2206 (1970).
  15. E. Wolf, J. Opt. Soc. Am. A 3, 76 (1986).
  16. Lord Rayleigh, The Theory of Sound (reprinted by Dover, New York, 1945), Vol. II; Sec. 278 [with a modification appropriate to the time dependence exp(−2πivt) used in the present paper].
  17. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).
  18. C. J. Bouwkamp, Rep. Prog. Phys. (London Phys. Soc.) 17, 35 (1954).
  19. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed. (Clarendon, Oxford, 1958), Sec. 21.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited