Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Power quantum control of odd-order multiwave mixing in an electromagnetically induced transparency window

Not Accessible

Your library or personal account may give you access

Abstract

We investigate the power control behavior of odd-order multiwave mixing in an electromagnetically induced transparency window. We successfully obtain the evolution from pure enhancement (bright state), half-enhancement, and half-suppression, to pure suppression (dark state) in a four-wave mixing (FWM) channel. The correlations of two bright and two dark states of FWM are studied under four different kinds of power configurations. Moreover, the power-controlled quantum interference among multiple dark states is also studied in FWM and six-wave mixing channels. Such selective switching among multiple frequency channels could have potential applications in optical switching, optical communication, and quantum information processing.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Interference of three multiwave mixings via electromagnetically induced transparency

Zhiguo Wang, Peiying Li, Huaibin Zheng, Suling Sang, Ruyi Zhang, Yanpeng Zhang, and Min Xiao
J. Opt. Soc. Am. B 28(8) 1922-1927 (2011)

Observation of dressed odd-order multi-wave mixing in five-level atomic medium

Ning Li, Zhengyang Zhao, Haixia Chen, Peiying Li, Yueheng Li, Yan Zhao, Guozhen Zhou, Shuqiao Jia, and Yanpeng Zhang
Opt. Express 20(3) 1912-1929 (2012)

Controlling Rydberg-dressed four-wave mixing via dual electromagnetically induced transparency windows

Zhaoyang Zhang, Haijun Tang, Irfan Ahmed, Noor Ahmed, Ghulam Abbas Khan, Abdul Rasheed Mahesar, and Yanpeng Zhang
J. Opt. Soc. Am. B 33(8) 1661-1667 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved