OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea

| PUBLISHED BY THE OPTICAL SOCIETY OF KOREA

  • Vol. 10, Iss. 3 — Sep. 25, 2006
  • pp: 130–142

Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor

Sang-Yeop Lee, Ling-Xin Chen, Jae-Bum Choo, Eun-Kyu Lee, and Sang-Hoon Lee  »View Author Affiliations


Journal of the Optical Society of Korea, Vol. 10, Issue 3, pp. 130-142 (2006)


View Full Text Article

Acrobat PDF (1252 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Lab-on-a-chip technology is attracting great interest because the miniaturization of reaction systems offers practical advantages over classical bench-top chemical systems. Rapid mixing of the fluids flowing through a microchannel is very important for various applications of microfluidic systems. In addition, highly sensitive on-chip detection techniques are essential for the in situ monitoring of chemical reactions because the detection volume in a channel is extremely small. Recently, a confocal surface enhanced Raman spectroscopic (SERS) technique, for the highly sensitive biological analysis in a microfluidic sensor, has been developed in our research group. Here, a highly precise quantitative measurement can be obtained if continuous flow and homogeneous mixing condition between analytes and silver nano-colloids are maintained. Recently, we also reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). This method overcomes many of the drawbacks of microarray chips, such as long hybridization times and inconvenient immobilization procedures. In this paper, our recent applications of the confocal Raman/fluorescence microscopic technology to a highly sensitive lab-on-a-chip detection will be reviewed.

© 2006 Optical Society of Korea

OCIS Codes
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6450) Spectroscopy : Spectroscopy, Raman

History
Original Manuscript: September 11, 2006
Revised Manuscript: September 22, 2006
Published: September 25, 2006

Citation
Sang-Yeop Lee, Ling-Xin Chen, Jae-Bum Choo, Eun-Kyu Lee, and Sang-Hoon Lee, "Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor," J. Opt. Soc. Korea 10, 130-142 (2006)
http://www.opticsinfobase.org/josk/abstract.cfm?URI=josk-10-3-130


Sort:  Year  |  Journal  |  Reset

References

  1. D. R. Ryes, D. Iossifidis, P. -A. Auroux, and A. Manz, "Micro Total Analysis Systems 1. Introduction, Theory, and Technology," Anal. Chem., vol. 74, pp. 2623-2636, 2002 [CrossRef]
  2. P. -A. Auroux, D. Iossifidis, D. R. Ryes, and A. Manz, "Micro Total Analysis Systems 2. Analytical Standard Operations and Applications," Anal. Chem., vol. 74, pp. 2637-2652, 2002 [CrossRef]
  3. P. D. I. Fletcher, S. J. Haswell, and V. N. Paunov, "Theoretical considerations of chemical reactions in micro-reactors operating under electroosmotic and electrophoretic control," Analyst, vol. 124, pp. 1273-1282, 1999 [CrossRef]
  4. S. K. Sia and G. M. Whitesides, "Microfluidic devices fabricated in PDMS for biological studies," Electrophoresis, vol. 24, pp. 3563-3576, 2003 [CrossRef]
  5. J. Monahan, A. A. Geweirth, and R. G. Nuzzo, "Indirect fluorescence detection of simple sugars via high-pH electrophoresis in PDMS microfluidic chips," Electrophoresis, vol. 23, pp. 2347-2354, 2002 [CrossRef]
  6. J. C. Roulet, R. Voelkel, P. Hans, E. Verpoorte, N. F. de Rooij, and R. Daendliker, "Performance of an integrated microoptical system for fluorescence detection in microfluidic systems," Anal. Chem., vol. 74, pp. 3400-3407, 2002 [CrossRef]
  7. M. G. Roper, J. G. Shackman, G. M. Dahlgren, and R. T. Kennedy, "Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay," Anal. Chem., vol. 75, pp. 4711-4717, 2003 [CrossRef]
  8. H. Kawazumi, A. Tashiro, K. Ogino, and H. Maeda, "Observation of fluidic behavior in a PDMS micro-fluidic channel by a simple spectroscopic analysis," Lab. Chip, vol. 2, pp. 8-10, 2002 [CrossRef]
  9. M. A. Schwarz and P. C. Hauser, "Recent developments in detection methods for microfabricated analytical devices," Lab. Chip, vol. 1, pp. 1-6, 2001 [CrossRef]
  10. E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, "Single-Cell Analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process," Anal. Chem., vol. 74, pp. 1560-1564, 2002 [CrossRef]
  11. T. Minagawa, M. Tokeshi, and T. Kitamori, "Integration of a wet analysis system on a glass chip: determination of Co (II) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy," Lab. Chip, vol. 1, pp. 72-75, 2001 [CrossRef]
  12. S. Nie and S. Emory, "Probing Single Molecules and Single Nanoparticles by Surface Enhance Raman Scattering," Science, vol. 275, pp. 1102-1106, 1997 [CrossRef]
  13. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive Chemical Analysis by Raman Spectroscopy," Chem. Rev., vol. 99, pp. 2957-2975, 1999 [CrossRef]
  14. K. Yea, S. Lee, J. B. Kyong, J. Choo, E. K. Lee, S. W. Joo, and S. Lee, "Ultra-Sensitive Trace Analysis of Cyanide Ion Water Pollutant in a PDMS Microfluidic Channel Using Surface Enhanced Raman Spectroscopy," Analyst, vol. 130, pp. 1009-1011, 2005 [CrossRef]
  15. D. Lee, S. Lee, G. H. Seong, J. Choo, E. K. Lee, D. G. Gweon, and J. Choo, "Quantitative Analysis of Methyl Parathion Pesticides in a PDMS Microfluidic Channel Using Confocal Surface Enhanced Raman Spectroscopy," Appl. Spectrosc., vol. 60, pp. 373-377, 2006 [CrossRef]
  16. T. Park, S. Lee, G. Seong, J. Choo, E. K. Lee, Y. S. Kim, W. H. Ji, S. Y. Hwang, D. G. Gweon, and S. Lee, "Highly Sensitive Signal Detection of Duplex Dyelabelled DNA Oligonucleotides in a PDMS Microfluidic Chip: Confocal Surface-Enhanced Raman Spectroscopic Study," Lab. Chip, vol. 5, pp. 437-422, 2005 [CrossRef]
  17. W. Jeong, J. Kim, J. Choo, E. K. Lee, C. S. Han, D. J. Beebe, G. H. Seong, and S. Lee, "Continuous Fabrication of Biocatalyst Immobilized Microparticles Using Photopolymerization and Immiscible Liquids in Microfluidic Systems," Langmuir, vol. 21, pp. 3738-3741, 2005 [CrossRef]
  18. D. J. Kim, H. J. Oh, S. H. Lee, T. H. Park, and J. Choo, "Easily Integrative and Efficient Micromixer and Its Application to the Detection of Glucose-Catalyst Reactions," Analyst, vol. 130, pp. 293-298, 2005 [CrossRef]
  19. T. Park, M. Lee, J. Choo, Y. S. Kim, E. K. Lee, D. J. Kim, and S. Lee, "Analysis of Passive Mixing Behavior in a PDMS Microfluidic Channel Using Confocal Fluorescence and Raman Microscopy," Appl. Spectrosc., vol. 58, pp. 1172-1179, 2004 [CrossRef]
  20. M. Lee, J. Lee, H. Rhee, J. Choo, Y. G. Chai, and E. K. Lee, "Applicability of Laser-Induced Raman Microscopy for In-Situ Monitoring of Imine Formation in a Glass Microfluidic Chip," J. Raman Specirosc., vol. 34, pp. 737-742, 2003 [CrossRef]
  21. J. Jung, J. Choo, D. J. Kim, and S. Lee, "Quantitative Determination of Nicotine in a PDMS Microfluidic Channel Using Surface Enhanced Raman Spectroscopy," Bull. Kor. Chem. Soc., vol. 27, pp. 277-280, 2006
  22. K. Yea, S. Lee, J. Choo, C. H. Oh, and S. Lee, "Fast and sensitive analysis of DNA hybridization in a PDMS microfluidic channel using fluorescence resonance energy transfer," Chem. Commun., pp. 1509-1511, 2006 [CrossRef]
  23. S. Kim, L. Chen, S. Lee, G. H. Seong, J. Choo, E. K. Lee, B. S. Chun, D. G. Gweon, S. Park, and C." H. Oh, "Rapid DNA Hybridization Analysis Using PDMS Microfluidic Sensor and Molecular Beacon," (submitted for publication)
  24. J. Jung, L. Chen, S. Lee, S. Kim, G. H. Seong, J. Choo, E. K. Lee, D. J. Kim, and S. Lee, "Fast and Sensitive DNA Analysis Using the Changes in FRET Signals of Molecular Beacons in a PDMS Microfluidic Channel," submitted for publication
  25. S. A. E. Marras, F. R. Kramer, and S. Tyagi, "Efficiencies of fluorescence energy transfer and contact- mediated quenching in oligonucleotide probes," Nucleic Acids Res., vol. 30, pp. 122-129, 2002 [CrossRef]
  26. A. R. C;app, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, "Can luminescence quantum dots be efficient energy acceptors with organic dye donor?," J. Amer. Chem. Soc., vol. 127, pp. 1242-1250, 2005 [CrossRef]
  27. E. Heyduk and T. Heyduk, "Nucleic acid-based fluorescence sensors for detecting proteins," Anal. Chem., vol. 77, pp. 1147-1156, 2005 [CrossRef]
  28. N. Leopold and B. Lendl, "A new Method for Fast Preparation of Highly SERS Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride," J. Phys. Chem. B, vol. 107, pp. 5723-5727, 2003 [CrossRef]
  29. F. T. Docherty, M. Clark G. McNay, D. Graham and W. E. Smith, "Multiple labeled nanoparticles for bio detection," Faraday Discuss., vol. 126, pp. 281-288, 2004 [CrossRef]
  30. K. Flauds, W. E. Smith, and D. Graham, "Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis," Anal. Chem., vol. 76, pp. 412-417, 2004 [CrossRef]
  31. T. J. Kim, S. W. Lee, and D. G. Gweon, "High precision measurement of 3D profile using confocal differential heterodyne interferometer," J. Opt. Soc. Kor., vol. 9, pp. 22-25, 2005 [CrossRef]
  32. D. K. Kang, H. K. Yoo, S. W. Lee, and D. G. Gweon, "Lateral resolution enhancement in confocal self-interference microscopy with commercial calcite plate," J. Opt. Soc. Kor., vol. 9, pp. 32-35, 2005 [CrossRef]

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited