OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea


  • Vol. 13, Iss. 3 — Sep. 25, 2009
  • pp: 398–402

Terahertz Frequency Spreading Filter via One-dimensional Dielectric Multilayer Structures

Min-Woo Yi, Young-Chan Kim, Dae-Su Yee, and Jae-Wook Ahn  »View Author Affiliations

Journal of the Optical Society of Korea, Vol. 13, Issue 3, pp. 398-402 (2009)

View Full Text Article

Acrobat PDF (588 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We present a method of using one-dimensional dielectric multilayer structures for designing terahertz frequency spreading filters. The interference of terahertz pulses in these structures composed of alternating weak and strong refractive materials allows design of well-separated THz frequency components within a modulation-limited THz spectral envelope. The design characteristics of these coarse THz combs are limited by the saturation effect and also by the deformation of the THz pulse time-traveling within the structure. The details of the designed THz waveform synthesis from these THz multilayer spectral filters are verified by experiments using time-domain terahertz pulsed spectroscopy.

© 2009 Optical Society of Korea

OCIS Codes
(230.4170) Optical devices : Multilayers
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(350.2460) Other areas of optics : Filters, interference
(350.4600) Other areas of optics : Optical engineering
(300.6495) Spectroscopy : Spectroscopy, teraherz

Original Manuscript: July 3, 2009
Revised Manuscript: August 13, 2009
Manuscript Accepted: August 14, 2009
Published: September 25, 2009

Min-Woo Yi, Young-Chan Kim, Dae-Su Yee, and Jae-Wook Ahn, "Terahertz Frequency Spreading Filter via One-dimensional Dielectric Multilayer Structures," J. Opt. Soc. Korea 13, 398-402 (2009)

Sort:  Year  |  Journal  |  Reset


  1. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007) [CrossRef]
  2. D. Mittleman, Sensing with Terahertz Radiation (Springer-Verlag, Berlin, Germany, 2003)
  3. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990) [CrossRef]
  4. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, "Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity float-zone silicon," J. Opt. Soc. Am. B 21, 1379-1386 (2004) [CrossRef]
  5. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, "Gas sensing using terahertz time-domain spectroscopy," Appl. Phys. B: Lasers and Optics 67, 379-390 (1998) [CrossRef]
  6. J. Hlinka, T. Ostapchuk, D. Nuzhnyy, J. Petzelt, P. Kuzel, C. Kadlec, P. Vanek, I. Ponomareva, and L. Bellaiche, "Coexistence of the phonon and relaxation soft modes in the terahertz dielectric response of tetragonal <TEX>$BaTiO_3$</TEX>," Phys. Rev. Lett. 101, 167402-1~ 167402-4 (2008) [CrossRef]
  7. Y. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, "Protein dynamical transition does not require protein structure," Phys. Rev. Lett. 101, 178103-1~ 178103-4 (2008) [CrossRef]
  8. I. A. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, "Low dispersive dielectric mirrors for future terahertz wireless communication systems," IEEE Microwave and Wireless Components Letters 18, 67-69 (2008) [CrossRef]
  9. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, "A single pixel terahertz imaging system based on compressed sensing," Appl. Phys. Lett. 93, 121105-1~121105-3 (2008) [CrossRef]
  10. B. E. Cole, J. B. Willams, B. T. King, M. S. Sherwin, and C. R. Stanley, "Coherent manipulation of semiconductor quantum bits with terahertz radiation," Nature (London) 410, 60-63 (2001) [CrossRef]
  11. J. Ahn, D. N. Hutchinson, C. Rangan, and P. H. Buchsbaum, "Quantum phase retrieval of a rydberg wave packet using a half-cycle pulse," Phys. Rev. Lett. 86, 1179-1182 (2001) [CrossRef]
  12. J. Ahn, A. Efimov, R. Averitt, and A. Taylor, "Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses," Opt. Exp. 11, 2486-2496 (2003)
  13. N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C.-S. Kee, D.-K. Ko, and J. Lee, "Temperature dependent terahertz generation at periodically poled stoichiometric lithium tantalate crystal using femtosecond laser pulses," J. Opt. Soc. Korea 12, 200-204 (2008) [CrossRef]
  14. M. Yi, K. H. Lee, I. Maeng, J.-H. Son, R. D. Averitt, and J. Ahn, "Tailoring the spectra of terahertz emission from CdTe and ZnTe electro-optic crystals," Jpn. J. Appl. Phys. 47, 202-204 (2008) [CrossRef]
  15. W. Withayachumnankul, B. M. Fischer, and D. Abbott, "Quarter-wavelength multilayer interference filter for terahertz waves," Opt. Comm. 281, 2374-2379 (2008) [CrossRef]
  16. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature (London) 444, 597-600 (2006) [CrossRef]
  17. H.-T. Chen, J. F. O"Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nat. Photonics 2, 295-298 (2008) [CrossRef]
  18. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, "Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide," Appl. Phys. Lett. 93, 024101-1~024101-3 (2008) [CrossRef]
  19. E. ozbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "Double-etch geometry for millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 65, 1617-1619 (1994) [CrossRef]
  20. H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108-1~041108-3 (2005) [CrossRef]
  21. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, "Transmission resonances through quasicrystal arrays of subwavelength apertures," Nature (London) 446, 517-521 (2007) [CrossRef]
  22. C. Kang, C.-S. Kee, I.-B. Sohn, and J. Lee, "Spectral properties of THz-periodic metallic structures," J. Opt. Soc. Korea 12, 196-199 (2008) [CrossRef]
  23. N. Matsumoto, T. Nakagawa, K. Kageyama, N. Wada, and Y. Sakabe, "Terahertz band-pass filter fabricated by multilayer ceramic technology," Jpn. J. Appl. Phys. 45, 7499-7502 (2006) [CrossRef]
  24. H. Nemec, P. Kuzel, F. Garet, and L. Duvillaret, "Time-domain terahertz study of defect formation in one-dimensional photonic crystals," Appl. Opt. 43, 1965-1970(2004) [CrossRef]
  25. I. Hosako, "Multilayer optical thin films for use at terahertz frequencies: method of fabrication," Appl. Opt. 44, 3769-3773 (2005) [CrossRef]
  26. N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kurner, and D. Mittleman, "Omnidirectional terahertz mirrors: a key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905-1~202905-3 (2006) [CrossRef]
  27. C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, "Fully flexible terahertz bragg reflectors based on titania loaded polymers," in Proc. Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-optics, (CLEO/QELS) (San Jose, California, USA, 2008), art. no. 4551728
  28. E. Hecht, Optics, fourth ed. (Addison-Wesley, San Francisco, USA, 2002)
  29. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, "High-intensity THz radiation from a microstructured large-area photoconductor," Appl. Phys. Lett. 86, 121114- 1~121114-3 (2005) [CrossRef]
  30. Q. Wu and X.-C. Zhang, "Ultrafast electro-optic field sensors," Appl. Phys. Lett. 68, 1604-1606 (1996) [CrossRef]
  31. P. Planken, N. Nienhuys, H. J. Bakker, and W. T. Wenckebach, "Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe," J. Opt. Soc. Am. B 18, 313-317 (2001) [CrossRef]

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited