OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea

| PUBLISHED BY THE OPTICAL SOCIETY OF KOREA

  • Vol. 14, Iss. 1 — Mar. 1, 2010
  • pp: 1–13

Common-path Optical Coherence Tomography for Biomedical Imaging and Sensing

Jin-U. Kang, Jae-Ho Han, Xuan Liu, and Kang Zhang  »View Author Affiliations


Journal of the Optical Society of Korea, Vol. 14, Issue 1, pp. 1-13 (2010)


View Full Text Article

Acrobat PDF (2248 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper describes a development of a fiber optic common-path optical coherence tomography (OCT) based imaging and guided system that possess ability to reliably identify optically transparent targets that are on the micron scale; ability to maintain a precise and safe position from the target; ability to provide spectroscopic imaging; ability to imaging biological target in 3-D. The system is based on a high resolution fiber optic Common-Path OCT (CP-OCT) that can be integrated into various mini-probes and tools. The system is capable of obtaining >70K A-scan per second with a resolution better than <TEX>$3\;{\mu}m$</TEX>. We have demonstrated that the system is capable of one-dimensional real-time depth tracking, tool motion limiting and motion compensation, oxygen-saturation level imaging, and high resolution 3-D images for various biomedical applications.

© 2010 Optical Society of Korea

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors

History
Original Manuscript: February 2, 2010
Revised Manuscript: March 9, 2010
Manuscript Accepted: March 9, 2010
Published: March 25, 2010

Citation
Jin-U. Kang, Jae-Ho Han, Xuan Liu, and Kang Zhang, "Common-path Optical Coherence Tomography for Biomedical Imaging and Sensing," J. Opt. Soc. Korea 14, 1-13 (2010)
http://www.opticsinfobase.org/josk/abstract.cfm?URI=josk-14-1-1


Sort:  Year  |  Journal  |  Reset

References

  1. S. Rizzo, F. Patelli, and D. R. Chow, Vitreo-retinal Surgery (Springer-Verlag Berlin Heidelberg, 2009).
  2. R. H. Taylor, A. Menciassi, G. Fichtinger, and P. Dario, Medical Robotics and Computer-Integrated Surgery (Springer Handbook of Robotics, Springer-Verlag Berlin Heidelberg, 2008).
  3. B. E. Bouma, Handbook of Optical Coherence Tomography (Informa HealthCare, USA, 2001).
  4. M. S. Jafri, R. Tang, and C.-M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176, 85-89 (2009). [CrossRef]
  5. A. Low, G. Tearney, B. Bouma, and I. Jang, “Technology insight: optical coherence tomography-current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154-162 (2006). [CrossRef]
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency domain ranging,” Opt. Exp. 12, 2977-2998 (2004). [CrossRef]
  7. S. A. Boppart, M. E. Brezinski, C. Pitris, and J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery 43, 834-841 (1998). [CrossRef]
  8. F. Ikeda, T. Iida, and S. Kishi, “Resolution of retinoschisis after vitreous surgery in X-linked retinoschisis,” Ophthalmology 115, 718-722 (2008). [CrossRef]
  9. N. Iftimia, B. Bouma, J. Boer, B. Park, B. Cense, and G. Tearney, “Adaptive ranging for optical coherence tomography,” Opt. Exp. 12, 4025-4034 (2004). [CrossRef]
  10. G. Maguluri, M. Mujat, B. Park, K. Kim, W. Sun, N. Iftimia, R. Ferguson, D. Hammer, T. Chen, and J. Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Exp. 15, 16808-16817 (2007). [CrossRef]
  11. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, USA, 2008).
  12. G. J. Tearny, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997). [CrossRef]
  13. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  14. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Select. Topical Quantum Electron. 5, 1185-1192 (1999). [CrossRef]
  15. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992). [CrossRef]
  16. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484-1486 (1999). [CrossRef]
  17. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nature Biotech. 21, 1361-1367 (2003). [CrossRef]
  18. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Opthalmol. 112, 1584-1589 (1994).
  19. J. Bush, P. Davis, and M. A. Marcus, “All-fiber optic coherence domain interferometric techniques,” Proc. SPIE, Photonics East, 4204A-08 (2000).
  20. B. E. Bouma and G. J. Tearny, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, USA, 2002)
  21. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O"Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689-1692 (2004). [CrossRef]
  22. R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointenstinal tissues,” Lasers Surg. Med. 30, 201-208 (2002). [CrossRef]
  23. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546-1548 (2003). [CrossRef]
  24. K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2, 491-504 (2003).
  25. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705-1720 (1994). [CrossRef]
  26. S. J. Kim and N. M. Bressler, “Optical coherence tomography and cataract surgery,” Curr. Opin. Ophthalmol. 20, 46-51 (2009).
  27. J. K. Barton, K. W. Gossage, W. Xu, J. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salache, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2, 525-535 (2003).
  28. S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Soehendra, and N. Schrodern, “In vivo endoscopic optical coherence tomography of the human gastrointestinal tract-toward optical biopsy,” Endoscopy 32, 743-749 (2000). [CrossRef]
  29. S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic optical coherence tomography of esophagitis, Barrett"s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750-755 (2000). [CrossRef]
  30. I. Hart, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahighresolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608-610 (2001). [CrossRef]
  31. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “Highresolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243-245 (2002). [CrossRef]
  32. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Y. P. Chumakov, and O. S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432-440 (1997). [CrossRef]
  33. Y. Chen, X. Li, M. Cobb, X. Liu, and R. Thariani, “Full dispersion compensation in real-time optical coherence tomography involving a phase/frequency modulator,” in Proc. Conference on Lasers and Electro-Optics (CLEO) (San Francisco, California, May 2004), paper CThT76.
  34. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42, 6953-6958 (2003). [CrossRef]
  35. M. J. Ju, S. Y. Ryu, J. Na, H. Y. Choi, and B. H. Lee, “Common-path optical frequency domain imaging system designed for identifying and grading pearls,” Proc. SPIE, Photonics West, 7556-39 (2010).
  36. R. Beddows, S. W. James, and R. P. Tatam, “Improved performance interferometer designs for optical coherence tomography,” in Proc. The 15th Optical Fiber Sensors Conference Technical Digest (Portland, OR, USA, 2002), pp. 527-530.
  37. P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fibre Fizeau-based OCT,” Proc. SPIE 5502, 338-341 (2004). [CrossRef]
  38. X. Liu, X. Li, D.-H. Kim, I. Ilev, and J. U. Kang, “Fiberoptic Fourier-domain common-path OCT,” Chin. Opt. Lett. 6, 899-901 (2008). [CrossRef]
  39. U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber Fizeau optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Select. Topical Quantum Electron. 11, 799-805 (2005). [CrossRef]
  40. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, “Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon,” Opt. Exp. 14, 1878-1887 (2006). [CrossRef]
  41. K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Exp. 17, 2375-2384 (2009). [CrossRef]
  42. U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78, 113102 (2007). [CrossRef]
  43. X. Li, J.-H. Han, X. Liu, and J. U. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47, 4833-4840 (2008). [CrossRef]
  44. S. Vergnole, G. Lamouche, M. Dufour, and B. Gauthier, “Common path swept-source OCT interferometer with artifact removal,” Proc. SPIE 6847, 68472 (2008).
  45. J.-H. Han, I. K. Ilev, D.-H. Kim, C. G. Song, and J. U. Kang, “Investigation of gold-coated bare fiber probe for in situ intra-vitreous coherence domain optical imaging and sensing,” Appl. Phys. B : Lasers and Optics, DOI: 10.1007/s00340-010-3910-4. [CrossRef]
  46. K. Zhang and J. U. Kang, “Self-adaptive common-path Fourier-domain optical coherence tomography with real-time surface recognition and feedback control,” in Proc. Conference on Lasers and Electro-Optics (CLEO) (Shanghai, China, 2009), paper JTuD59.
  47. K. Zhang, W. Wang, J. Han, and J. U. Kang, “Surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56, 2318-2321 (2009). [CrossRef]
  48. M. Balicki, J.-H. Han, I. Iordachita, P. Gehlbach, J. Handa, J. Kang, and R. Taylor, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Lecture Notes in Computer Science 5761, 108-115 (2009). [CrossRef]
  49. V. Kamat, “Pulse oximetry,” Indian J. Anaesh. 46, 261-268 (2002).
  50. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-) hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436-1438 (2003). [CrossRef]
  51. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30, 1015-1017 (2005). [CrossRef]
  52. C. W. Lu, C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett. 33, 416-418 (2008). [CrossRef]
  53. http://omlc.ogi.edu/spectra/index.html.
  54. K. Briely-Sebo and A. Bjornerud “Accurate de-oxygenation of ex vivo whole blood using sodium Dithionite,” Proc. Intl. Sot. Mag. Reson. Med. 8. 2025 (2000).
  55. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111-113 (2000). [CrossRef]
  56. S. G. Yuen, P. M. Novotny, and R. D. Howe, “Quasiperiodic predictive filtering for robot-assisted beating heart surgery,” in Proc. International Conference on Robotics and Automation (ICRA) (Pasadena, California, USA, May 2008), pp. 3875-3880.
  57. N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. D. Yang, “Electrostatic forwardviewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett. 33, 657-659 (2008). [CrossRef]
  58. W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006). [CrossRef]
  59. M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C.-M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10, 051603 (2005). [CrossRef]
  60. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depthresolved microscopy,” Opt. Exp. 13, 1468-1476 (2005). [CrossRef]
  61. J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanningless wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microscopy 229, 104-114 (2008). [CrossRef]
  62. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Exp. 16, 21598-21607 (2008). [CrossRef]
  63. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Exp. 14, 8675-8684 (2006). [CrossRef]
  64. H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18, 2949-2957 (2007). [CrossRef]
  65. J. W. Pyhtila, J. D. Boyer, K. J. Chalut, and A. Wax, “Fourierdomain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy,” Opt. Lett. 31, 772-774 (2006). [CrossRef]
  66. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30, 1803-1805 (2005). [CrossRef]
  67. J.-H. Han, X. Liu, C. G. Song and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45, 1110-1112 (2009). [CrossRef]

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited