OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea

| PUBLISHED BY THE OPTICAL SOCIETY OF KOREA

  • Vol. 14, Iss. 3 — Sep. 1, 2010
  • pp: 178–184

Depolarization Ratio Retrievals Using AERONET Sun Photometer Data

Kyung-Hwa Lee, Detlef Muller, Young-Min Noh, Sung-Kyun Shin, and Dong-Ho Shin  »View Author Affiliations


Journal of the Optical Society of Korea, Vol. 14, Issue 3, pp. 178-184 (2010)


View Full Text Article

Acrobat PDF (960 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We present linear particle depolarization ratios (LPDRs) retrieved from measurements with an AERONET Sun photometer at the Gwangju Institute of Science and Technology (GIST), Korea (<TEX>$35.10^{/circ}N$</TEX>, <TEX>$126.53^{\circ}E$</TEX>) between 19 October and 3 November 2009. The Sun photometer data were classified into three categories according to <TEX>${\AA}$</TEX>ngstr<TEX>$\ddot{o}$</TEX> exponent and size distribution: 1) pure Asian dust (19 October 2009), 2) Asian dust mixed with urban pollution observed in the period from 20-26 October 2009, and 3) clean conditions (3 November). We show that the LPDRs can be used to distinguish among Asian dust, mixed aerosol, and non-Asian dust in the atmosphere. The mean LPDR of the pure Asian dust case is 23 %. Mean LPDRs are 13 % for the mixed case. The lowest mean LPDR is 6 % in the clean case. We compare our results to vertically resolved LPDRs (at 532 nm) measured by a Raman LIDAR system at the same site. In most cases, we find good agreement between LPDRs derived with Sun photometer and measured by LIDAR.

© 2010 Optical Society of Korea

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.3640) Atmospheric and oceanic optics : Lidar
(010.1350) Atmospheric and oceanic optics : Backscattering
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

History
Original Manuscript: June 28, 2010
Revised Manuscript: August 10, 2010
Manuscript Accepted: August 25, 2010
Published: September 25, 2010

Citation
Kyung-Hwa Lee, Detlef Muller, Young-Min Noh, Sung-Kyun Shin, and Dong-Ho Shin, "Depolarization Ratio Retrievals Using AERONET Sun Photometer Data," J. Opt. Soc. Korea 14, 178-184 (2010)
http://www.opticsinfobase.org/josk/abstract.cfm?URI=josk-14-3-178


Sort:  Year  |  Journal  |  Reset

References

  1. J. Hansen, W. Rossow, B. Carlson, A. Lacis, L. Travis, A. D. Genio, I. Fung, B. Cairns, M. Mishchenko, and M. Sato, “Low-cost long-term monitoring of global climate forcings and feedbacks,” Climatic Change 31, 247-271 (1995). [CrossRef]
  2. P. B. Russell, P. V. Hobbs, and L. L. Stowe, “Aerosol properties and radiative effects in the United States east coast haze plume: an overview of the tropospheric aerosol radiative forcing observational experiment (TARFOX),” J. Geophys. Res. 104, 2213-2222 (1999). [CrossRef]
  3. V. Ramanathan and Y. Feng, “Air pollution, greenhouse gases and climate change: global and regional perspectives,” Atmos. Environ. 43, 37-50 (2009). [CrossRef]
  4. T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B. J. Sohn, J. G. Won, S. C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-based network observation of Asian dust events of April 1998 in East Asia,” J. Geophys. Res. 106, 18, 345-18, 359 (2001). [CrossRef]
  5. M. Yoshino, “Climatology of yellow sand (Asian sand, Asian dust or Kosa) in East Asia,” Science In China 45, 59-70 (2002).
  6. I. Mori, M. Nishikawa, T. Tanimura, and H. Quan, “Change in size distribution and chemical composition of Kosa (Asian dust) aerosol during long-range transport,” Atmos. Environ. 37, 4253-4263 (2003). [CrossRef]
  7. Y. Iwasaka, M. Yamato, R. Imasu, and A. Ono, “Transport of Asian dust (Kosa) particles; importance of weak Kosa events on the geochemical cycle of soil particles,” Tellus 40B, 494-503 (1988). [CrossRef]
  8. X. Y. Zhang, S. L. Gong, Z. X. Shen, F. M. Mei, X. X. Xi, L. C. Liu, Z. J. Zhou, D. Wang, Y. Q. Wang, and Y. Cheng, “Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. network observations,” J. Geophys. Res. 108, doi:10.1029/2002JD002632 (2003). [CrossRef]
  9. V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, and J. Gasteiger, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus 61B, 165-179 (2009).
  10. K. Sassen, “The polarization LIDAR technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991). [CrossRef]
  11. T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y. S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman LIDAR measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36, 5479-5489 (2002). [CrossRef]
  12. D. Muller, K. Franke, A. Ansmann, and D. Althausen, “Indo-Asian pollution during INDOEX: microphysical particle properties and single-scattering albedo inferred from multiwavelength LIDAR observations,” J. Geophys. Res. 108, doi:10.1029/2003JD003538 (2003). [CrossRef]
  13. T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman LIDAR over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, doi:10.1029/2004GL021105 (2004). [CrossRef]
  14. T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, “Application of LIDAR depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles,” J. Geophys. Res. 104, 31, 781-31, 792 (1999).
  15. F. Cairo, G. D. Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, “Comparison of various linear depolarization parameters measured by LIDAR,” Appl. Opt. 38, 4425-4432 (1999) [CrossRef]
  16. O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, doi:10.1029/2001GL014506 (2002). [CrossRef]
  17. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1-16 (1998). [CrossRef]
  18. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20, 673-20, 696 (2000). [CrossRef]
  19. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, doi:10.1029/2005JD006619 (2006). [CrossRef]
  20. D. Muller, A. Ansmann, V. Freudenthaler, K. Kandler, C. Toledano, A. Hiebsch, J. Gasteiger, M. Esselborn, M. Tesche, B. Heese, D. Althausen, B. Weinzierl, and W. von Hoyningen-Huene, “Mineral dust observed with AERONET sun photometer, Raman LIDAR, and in-situ instruments during SAMUM 2006: shape-dependent particle properties,” J. Geophys. Res. 115, doi:10.1029/2009JD012523 (2010). [CrossRef]
  21. H. Volten, O. Munoz, E. Rol, J. F. de Haan, W. Vassen, and J. W. Hovenier, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106, 17, 375-17, 401 (2001). [CrossRef]
  22. T. Sakai, T. Shibata, S. A. Kwon, Y. S. Kim, K. Tamura, and Y. Iwasaka, “Free tropospheric aerosol backscatter, depolarization ratio, and relative humidity measured with the Raman LIDAR at Nagoya in 1994-1997: contributions of aerosols from the Asian continent and the Pacific Ocean,” Atmos. Environ. 34, 431-442 (2000). [CrossRef]
  23. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman LIDAR system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068-3082 (1992). [CrossRef]
  24. A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427-3428 (1980). [CrossRef]
  25. C. T. Chang, C. J. Tsai, C. T. Lee, S. Y. Chang, M. T. Cheng, and H. M. Chein, “Differences in PM10 concentrations measured by <TEX>${\beta}$</TEX>-gauge monitor and hi-vol sampler,” Atmos. Environ. 35, 5741-5748 (2001). [CrossRef]
  26. D. Muller, B. Weinzierl, A. Petzold, K. Kandler, A. Ansmann, T. Müller, M. Tesche, V. Freudenthaler, M. Esselborn, B. Heese, D. Althausen, A. Schladitz, S. Otto, and P. Knippertz, “Mineral dust observed with AERONET sun photometer, Raman LIDAR, and in-situ instruments during SAMUM 2006: shape-independent particle properties,” J. Geophys. Res. 115, doi:10.1029/2009JD012520 (2010). [CrossRef]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, USA, 1983), p. 541.
  28. D. H. Shin, Y. M. Noh, B. Tatarov, S. K. Shin, Y. J. Kim, and D. Müller, “Multiwavelength aerosol Raman LIDAR for optical and microphysical aerosol typing over East Asia,” in Proc. International Laser Radar Conference (St. Petersburg, Russia, Jul. 2010), CD, paper S01P 52.
  29. K. H. Lee, D. Müller, A. Ansmann, M. Tesche, D. Althausen, M. Esselborn, B. Heese, B. Weinzierl, A. Petzold, K. Kandler, and C. Toledano, “LIDAR ratios and depolarization ratios of Saharan dust measured with LIDAR and inferred from AERONET sun photometer during SAMUM 2006,” in Proc. International Laser Radar Conference (St. Petersburg, Russia, Jul. 2010), CD, paper S9P 04.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited