OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea

| PUBLISHED BY THE OPTICAL SOCIETY OF KOREA

  • Vol. 15, Iss. 1 — Mar. 1, 2011
  • pp: 82–89

Numerical Investigation of Tunable Band-pass\band-stop Plasmonic Filters with Hollow-core Circular Ring Resonator

Amir Setayesh, Sayyed Reza Mirnaziry, and Mohammad Sadegh Abrishamian  »View Author Affiliations


Journal of the Optical Society of Korea, Vol. 15, Issue 1, pp. 82-89 (2011)


View Full Text Article

Acrobat PDF (673 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we numerically study both band-pass and band-stop plasmonic filters based on Metal-Insulator-Metal (MIM) waveguides and circular ring resonators. The band-pass filter consists of two MIM waveguides coupled to each other by a circular ring resonator. The band-stop filter is made up of an MIM waveguide coupled laterally to a circular ring resonator. The propagating modes of Surface Plasmon Polaritons (SPPs) are studied in these structures. By substituting a portion of the ring core with air, while the outer dimensions of the ring resonator are kept constant, we illustrate the possibility of red-shift in resonant wavelengths in order to tune the resonance modes of the proposed filters. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach to longer resonant wavelengths. The results are obtained by a 2D finite-difference time-domain (FDTD) method. The introduced structures have potential applications in plasmonic integrated circuits and can be simply fabricated.

© 2011 Optical Society of Korea

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5403) Optoelectronics : Plasmonics
(130.7408) Integrated optics : Wavelength filtering devices

History
Original Manuscript: December 10, 2010
Revised Manuscript: January 28, 2011
Manuscript Accepted: January 28, 2011
Published: March 25, 2011

Citation
Amir Setayesh, Sayyed Reza Mirnaziry, and Mohammad Sadegh Abrishamian, "Numerical Investigation of Tunable Band-pass\band-stop Plasmonic Filters with Hollow-core Circular Ring Resonator," J. Opt. Soc. Korea 15, 82-89 (2011)
http://www.opticsinfobase.org/josk/abstract.cfm?URI=josk-15-1-82


Sort:  Year  |  Journal  |  Reset

References

  1. S. I. Bozhevolnyi, “Plasmonic nanoguides and circuits,” inPlasmonics and Metamaterials (Pan Stanford Publishing,Singapore, 2008).
  2. E. Ozbay, “Plasmonics: merging photonics and electronicsat nanoscale dimensions,” Science 311, 189-193 (2006). [CrossRef]
  3. J. Jung, “Optimal design of dielectric-loaded surface plasmonpolariton waveguide with genetic algorithm,” J. Opt. Soc.Korea 14, 277-281 (2010). [CrossRef]
  4. K. M. Byun, “Development of nanostructured plasmonicsubstrates for enhanced optical biosensing,” J. Opt. Soc.Korea 14, 65-76 (2010). [CrossRef]
  5. S. Kim, Y. T. Byun, D.-G. Kim, N. Dagli, and Y. Chung,“Widely tunable coupled-ring reflector laser diode consistingof square ring resonators,” J. Opt. Soc. Korea 14, 38-41(2010). [CrossRef]
  6. J. Yoon, G. Lee, S. H. Song, C.-H. Oh, and P.-S. Kim,“Photonic band gaps for surface plasmon modes in dielectricgratings on a flat metal surface,” J. Opt. Soc. Korea 6, 76-82 (2002). [CrossRef]
  7. Z. Fu, Q. Gan, K. Gao, Z. Pan, and F. J. Bartoli, “Numericalinvestigation of a bidirectional wave coupler based onplasmonic Bragg gratings in the near infrared domain,” J.Lightwave Technol. 26, 3699-3703 (2008). [CrossRef]
  8. D. K. Gramotev and D. F. P. Pile, “Single-mode sub-wavelengthwaveguide with channel plasmon-polaritons in triangular,”Appl. Phys. Lett. 85, 6323-6325 (2004). [CrossRef]
  9. E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, andA. Polman, “Near-field visualization of strongly confinedsurface plasmon polaritons in metal-insulator-metal waveguides,”Nano Lett. 8, 2925-2929 (2008). [CrossRef]
  10. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T.Kobayashi, “Guiding of a one-dimensional optical beamwith nanometer diameter,” Opt. Lett. 22, 475-477 (1997). [CrossRef]
  11. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi,“Long-range surface plasmon polariton nanowire waveguidesfor device applications,” Opt. Express 14, 314-319 (2006). [CrossRef]
  12. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E.Harel, B. E. Koel, and A. G. Requicha, “Local detection ofelectromagnetic energy transport below the diffraction limitin metal nanoparticle plasmon waveguides,” Nature 2, 229-232 (2003). [CrossRef]
  13. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg,“Electromagnetic energy transport via linear chains of silvernanoparticles,” Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  14. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulsepropagation in metal nanoparticle chain waveguides,” Phys.Rev. B 67, 205402-1-205402-5 (2003). [CrossRef]
  15. D. F. P. Pile and D. K. Gramotev, “Channel plasmon-polaritonin a triangular groove on a metal surface,” Opt. Lett. 29,1069-1071 (2004). [CrossRef]
  16. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W.Ebbesen, “Channel plasmon-polariton guiding by subwavelengthmetal grooves,” Phys. Rev. Lett. 95, 046802-1-046802-4(2005). [CrossRef]
  17. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, andM. Nakagaki, “Characteristics of gap plasmon waveguidewithstub structures,” Opt. Express 16, 16314-16325 (2008). [CrossRef]
  18. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel dropfilters in a plasmon-polaritons metal,” Opt. Express 14,2932-2937 (2006). [CrossRef]
  19. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin,“A subwavelength coupler-type MIM optical filter,” Opt.Express 17, 7549-7554 (2009). [CrossRef]
  20. A. Hosseini and Y. Massoud, “Nanoscale surface plasmonbased resonator using rectangular geometry,” Appl. Phys.Lett. 90, 181102 (2007). [CrossRef]
  21. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang,“The transmission characteristics of surface plasmon polaritonsin ring resonator,” Opt. Express 17, 24096-24101 (2009). [CrossRef]
  22. B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of ananoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D: Appl. Phys. 43, 385102 (2010). [CrossRef]
  23. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-passplasmonic waveguide filters with nanodisk resonators,”Opt. Express 18, 17922-17927 (2010). [CrossRef]
  24. S. A. Maier, Plasmonics: Fundamentals and Applications(Springer, New York, USA, 2007), Chapter 2.
  25. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman,“Plasmon slot waveguides: towards chip-scale propagationwith subwavelength-scale localization,” Physical Review B73, 035407-1-035407-9 (2006). [CrossRef]
  26. K. Y. Kim, Y. K. Cho, H.-S. Tae, and J.-H. Lee, “Lighttransmission along dispersive plasmonic gap and its subwavelengthguidance characteristics,” Opt. Express 14, 320-330(2006). [CrossRef]
  27. A. D. Rakic, A. B. DjuriSic, J. M. Elazar, and M. L.Majewski, “Optical properties of metallic films for verticalcavityoptoelectronic devices,” Appl. Opt. 37, 5271-5283(1968).
  28. Asanka Pannipitiya, Ivan D.Rukhlenko, Malin premaratne,Haroldo T.Hattori and Govind P. Agrawal, “Improved transmissionmodel for metal-dielectric-metal plasmmonic waveguideswith stub structures,” Opt. Express 18, 6191-6204 (2010). [CrossRef]
  29. I. Wolff and N. Knoppik, “Microstrip ring resonator anddispersion measurement on microstrip lines,” Electron. Lett.7, 779-781 (1971). [CrossRef]

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited