OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea

| PUBLISHED BY THE OPTICAL SOCIETY OF KOREA

  • Vol. 15, Iss. 2 — Jun. 1, 2011
  • pp: 124–127

Design and Simulation of an 808 nm InAlAs/AlGaAs GRIN-SCH Quantum Dot Laser Diode

Trevor Chan, Sung-Hun Son, Kyoung-Chan Kim, and Tae-Geun Kim  »View Author Affiliations


Journal of the Optical Society of Korea, Vol. 15, Issue 2, pp. 124-127 (2011)


View Full Text Article

Acrobat PDF (323 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Quantum dots were designed within a GRIN-SCH(Graded index - Separate confinement Heterostructure) heterostructure to create a high power InAlAs/AlGaAs laser diode. 808 nm light emission was with a quantum dot composition of In0.665Al0.335As and wetting layer composition of Al0.2Ga0.8As by LASTIP simulation software. Typical characteristics of GRIN structures such as high confinement ratios and Gaussian beam profiles were shown to still apply when quantum dots are used as the active media. With a dot density of 1.0x1011 dots/cm2, two quantum dot layers were found to be good enough for low threshold, high-power laser applications.

© 2011 Optical Society of Korea

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4510) Fiber optics and optical communications : Optical communications
(060.3510) Fiber optics and optical communications : Lasers, fiber
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

History
Original Manuscript: March 3, 2011
Revised Manuscript: April 14, 2011
Manuscript Accepted: April 15, 2011
Published: June 25, 2011

Citation
Trevor Chan, Sung-Hun Son, Kyoung-Chan Kim, and Tae-Geun Kim, "Design and Simulation of an 808 nm InAlAs/AlGaAs GRIN-SCH Quantum Dot Laser Diode," J. Opt. Soc. Korea 15, 124-127 (2011)
http://www.opticsinfobase.org/josk/abstract.cfm?URI=josk-15-2-124


Sort:  Year  |  Journal  |  Reset

References

  1. S. H. Lee, H. W. Jung, K. H. Kim, and M. H. Lee, "All-optical flip-flop operation based on polarization bistability of conventional-type <TEX>$1.55-{\mu}m$</TEX> wavelength single-mode VCSELs," J. Opt. Soc. Korea 14, 137-141 (2010). [CrossRef]
  2. S. Kim, Y. T. Byun, D.-G. Kim, N. Dagli, and Y. Chung, "Widely tunable coupled-ring reflector laser diode consisting of square ring resonators," J. Opt. Soc. Korea 14, 38-41 (2010). [CrossRef]
  3. R. Puchert, A. Barwolff, U. Menzel, A. Lau, M. Voss, and T. Elsaesser, "Facet and bulk heating of GaAs/AlGaAs high-power laser arrays studied in spatially resolved emission and micro-Raman experiments," J. Appl. Phys. 80, 5559-5563 (1996). [CrossRef]
  4. M. B. Sanayeh, P. Brick, W. Schmid, B. Mayer, M. Muller, M. Reufer, K. Streubel, J. W. Tomm, and G. Bacher, "Temperature-power dependence of catastrophic optical damage in AlGaInP laser diodes," Appl. Phys. Lett. 91, 041115-041115-3 (2007). [CrossRef]
  5. M. Hempel, J. W. Tomm, M. Ziegler, T. Elsaesser, N. Michel, and M. Krakowski, "Catastrophic optical damage at front and rear facets of diode lasers," Appl. Phys. Lett. 97, 231101-231101-3 (2010). [CrossRef]
  6. G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, "Spatial hole burning and self-focusing in vertical-cavity surface-emitting laser diodes," Appl. Phys. Lett. 64, 542-544 (1994). [CrossRef]
  7. S. Y. Law and G. P. Agrawal, "Effects of spatial hole burning on gain switching in vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 33, 462-468 (1997). [CrossRef]
  8. H. J. Unold, M. Golling, F. Mederer, R. Michalzik, D. Supper, and K. J. Ebeling, "Single mode output power enhancement of InGaAs VCSELs by reduced spatial hole burning via surface etching," Electron. Lett. 37, 570-572 (2001). [CrossRef]
  9. W. T. Tsang, "Extermely low threshold (AlGa)As gradedindex waveguide separate-confinement heterostructure lasers grown by molecular beam epitaxy," Appl. Phys. Lett. 40, 217-219 (1982). [CrossRef]
  10. J. Nagle, S. Hersee, M. Krakowski, T. Weil, and C. Weisbuch, "Threshold current of single quantum well lasers: the role of the confining layers," Appl. Phys. Lett. 49, 1325-1327 (1986). [CrossRef]
  11. J. A. Martin and M. Sanchez, "Comparison between a graded and setp-index optical cavity in InGaN MQW laser diodes," Semicond. Sci. Technol. 20, 290-295 (2005). [CrossRef]
  12. D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul"nikov, P. S. Kop"ev, and Zh. I. Alferov, "Quantum dot lasers: breakthrough in optoelectronics," Thin Solid Films 367, 235-249 (2007).
  13. M. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, P. S. Kop"ev, and Zh. I. Alferov, "Ultra narrow luminescence lines from single quantum dots," Phys. Rev. Lett. 74, 4043-4046 (1995). [CrossRef]
  14. A. R. Kovsh, J. S. Wang, R. S. Hsiao, L. P. Chen, D. A. Livshits, G. Lin, V. M. Ustinov, and J. Y. Chi, "High power (200 mW) single mode operation of GaAs based InGaAsN/GaAs ridge waveguide lasers with wavelength around 1300 nm," Electron. Lett. 39, 1726-1728 (2003). [CrossRef]
  15. Z.-M. Li, "Physical models and numberical simulation of modern semiconductor lasers," Proc. SPIE 2994, 698-708 (1997). [CrossRef]

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited