OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea

| PUBLISHED BY THE OPTICAL SOCIETY OF KOREA

  • Vol. 15, Iss. 3 — Sep. 1, 2011
  • pp: 293–299

Fourier Domain Optical Coherence Tomography for Retinal Imaging with 800-nm Swept Source: Real-time Resampling in k-domain

Sang-Won Lee, Hyun-Woo Song, Bong-Kyu Kim, Moon-Youn Jung, Seung-Hwan Kim, Jae-Du Cho, and Chang-Seok Kim  »View Author Affiliations


Journal of the Optical Society of Korea, Vol. 15, Issue 3, pp. 293-299 (2011)


View Full Text Article

Acrobat PDF (2173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this study, we demonstrated Fourier-domain/swept-source optical coherence tomography (FD/SS-OCT) at a center wavelength of 800 nm for in vivo human retinal imaging. A wavelength-swept source was constructed with a semiconductor optical amplifier, a fiber Fabry-Perot tunable filter, isolators, and a fiber coupler in a ring cavity. Our swept source produced a laser output with a tuning range of 42 nm (779 to 821 nm) and an average power of 3.9 mW. The wavelength-swept speed in this configuration with bidirectionality is 2,000 axial scans per second. In addition, we suggested a modified zero-crossing method to achieve equal sample spacing in the wavenumber (k) domain and to increase the image depth range. FD/SS-OCT has a sensitivity of ~89.7 dB and an axial resolution of 10.4 μm in air. When a retinal image with 2,000 A-lines/frame is obtained, an acquisition speed of 2.0 fps is achieved.

© 2011 Optical Society of Korea

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

History
Original Manuscript: April 27, 2011
Revised Manuscript: August 17, 2011
Manuscript Accepted: August 18, 2011
Published: September 25, 2011

Citation
Sang-Won Lee, Hyun-Woo Song, Bong-Kyu Kim, Moon-Youn Jung, Seung-Hwan Kim, Jae-Du Cho, and Chang-Seok Kim, "Fourier Domain Optical Coherence Tomography for Retinal Imaging with 800-nm Swept Source: Real-time Resampling in k-domain," J. Opt. Soc. Korea 15, 293-299 (2011)
http://www.opticsinfobase.org/josk/abstract.cfm?URI=josk-15-3-293


Sort:  Year  |  Journal  |  Reset

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef]
  2. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
  3. J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, "Optical coherence tomography: a new tool for glaucoma diagnosis," Curr. Opin. Ophthalmol. 6, 89-95 (1995).
  4. J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography," Arch. Ophthalmol. 113, 586-596 (1995).
  5. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
  6. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef]
  7. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef]
  8. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11, 3598-3604 (2003). [CrossRef]
  9. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-highspeed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003). [CrossRef]
  10. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005). [CrossRef]
  11. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef]
  12. S.-W. Lee, H.-W. Jeong, B.-M. Kim, Y.-C. Ahn, W. Jung, and Z. Chen, "Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 <TEX>${\mu}m$</TEX>," J. Korean Phys. Soc. 55, 2354-2360 (2009). [CrossRef]
  13. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, "Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second," Opt. Express 18, 20029-20048 (2010). [CrossRef]
  14. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, "Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second," Opt. Express 18, 14685-14704 (2010). [CrossRef]
  15. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, "Megahertz OCT for ultrawide-field retinal imaging with a 1050nm Fourier domain mode-locked laser," Opt. Express 19, 3044-3062 (2011). [CrossRef]
  16. B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. St. J. Russell, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986 (2003). [CrossRef]
  17. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for threedimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008). [CrossRef]
  18. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, "High-speed, highresolution optical coherence tomography and retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett. 32, 361-363 (2007). [CrossRef]
  19. R. S. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). [CrossRef]
  20. H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006). [CrossRef]
  21. H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12902-12908 (2006). [CrossRef]
  22. S.-W. Lee, C.-S. Kim, and B.-M. Kim, "External line-cavity wavelength-swept source at 850 nm for optical coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007). [CrossRef]
  23. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1436-1438 (2003). [CrossRef]
  24. J. U. Kang, J.-H. Han, X. Liu, and K. Zhang, "Commonpath optical coherence tomography for biomedical imaging and sensing," J. Opt. Soc. Korea 14, 1-13 (2010). [CrossRef]
  25. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000). [CrossRef]
  26. C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, "Nearinfrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647-1649 (2004). [CrossRef]
  27. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004). [CrossRef]
  28. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005). [CrossRef]
  29. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications," Opt. Lett. 31, 760-762 (2006). [CrossRef]
  30. M. Jeon, J. Zhang, and Z. Chen, "Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging," Opt. Express 16, 3727-3737 (2008). [CrossRef]
  31. W. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low-coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992). [CrossRef]
  32. A. N. S. Institute, "American national standard for safe use of lasers," in ANSI Z 136-1 (2000).
  33. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, "High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs," Opt. Express 16, 2547-2554 (2008). [CrossRef]
  34. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, ">400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging," Opt. Lett. 35, 2919-2921 (2010). [CrossRef]
  35. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, "Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications," Proc. SPIE 7554, 75541F (2010).
  36. K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. Chong, "MEMS scanner based swept source laser for optical coherence tomography," Proc. SPIE 7554, 75542Q (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited