OSA's Digital Library

Journal of the Optical Society of Korea

Journal of the Optical Society of Korea


  • Vol. 10, Iss. 4 — Dec. 25, 2006
  • pp: 145–156

Optics of Refractometers for Refractive Power Measurement of the Human Eye

Dong-Seob Ko and Byeong-Ha Lee  »View Author Affiliations

Journal of the Optical Society of Korea, Vol. 10, Issue 4, pp. 145-156 (2006)

View Full Text Article

Acrobat PDF (978 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In the field of ophthalmology, many diagnostic instruments based on optical technology have been developed, such as refractometer, keratometer, corneal mapper, tonometer, fundus camera, slit lamp, laser scan ophthalmoscope and optical coherence tomography. Among them, the refractometer that is used for measuring the refractive power of the human eye has the long research history and various types have been developed. However the efforts to realize more accurate and precise measurement are still in progress. The wavefront analyzer commercialized in recent years is an excellent outcome of such efforts. In this paper, a brief account of the developmental history of various refractometers including the wavefront analyzer is summarized, and the underlying measurement principle is introduced in the view of optics. Finally, the technical issues that should be solved for getting better performance are discussed.

© 2006 Optical Society of Korea

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(330.1070) Vision, color, and visual optics : Vision - acuity
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

Original Manuscript: December 7, 2006
Revised Manuscript: December 19, 2006
Published: December 25, 2006

Dong-Seob Ko and Byeong-Ha Lee, "Optics of Refractometers for Refractive Power Measurement of the Human Eye," J. Opt. Soc. Korea 10, 145-156 (2006)

Sort:  Year  |  Journal  |  Reset


  1. T. Hellmuth, "Sensors in Ophthalmology." Sensors Update, vol. 3, no. 1, pp. 289-323, 2001 [CrossRef]
  2. S. M. MacRae, R. R. Krueger, and R. A. Applegate, Customized corneal ablation (Slack, Thorofare, 2001)
  3. H. C. Howland, "The history and methods of ophthalmic wavefront sensing," J. Refract. Surg., vol. 16, no. 5, pp. S552-S553, 2000
  4. L. N. Thibos, "Principles of Hartmann-Shack aberrometry," J. Refract. Surg., vol. 16, no. 5, pp. S563-S565, 2000
  5. S. Buck, Der gesch<TEX>$\ddot{a}$</TEX>rfte blick zur geschichte der brille und ihrer verwendung in Deutschland seit 1850, Ph.D. Thesis, Philipps Univ., Germany, 2002
  6. M. Tscherning, "Die monochromatischen aberrationen des menschlichen auges," Z. Psychol. Physiol. Sinn., vol. 6, pp. 456-471, 1894
  7. B. Howland and H. C. Howland, "Subjective measurement of high-order aberrations of the eye," Science, vol. 193, pp. 580-582, 1976 [CrossRef]
  8. H. C. Howland and B. Howland, "A subjective method for the measurement of monochromatic aberrations of the eye," J. Opt. Soc. Am., vol. 67, no. 11, pp. 1508-1518, 1977 [CrossRef]
  9. R. E. Reason, "Sight-testing apparatus", US patent 2049222, 1936
  10. G. Collins, "The electronic refractometer," Br. J. Physiol. Opt., vol. 1, pp. 30-40, 1937
  11. N. Roth, "Automatic optometer for use with the undrugged human eye," Rev. Sci. Instrum., vol. 36, no. 11 pp. 1636-1641, 1965 [CrossRef]
  12. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A, vol. 11, no. 7, pp. 1949-1957, 1994 [CrossRef]
  13. E. Moreno-Barriuso, S. Marcos, R. Navarro, and S. A. Burns, "Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration," Optom. Vis. Sci., vol. 78, no. 3, pp. 152-156, 2001 [CrossRef]
  14. E. Moreno-Barriuso and R. Navarro, "Laser ray tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye," J. Opt. Soc. Am. A, vol. 17, no. 6, pp. 974-985, 2000 [CrossRef]
  15. B. C. Platt and R. Shack, "History and principles of Shack-Hartmann wavefront sensing," J. Refract. Surg., vol. 17, no. 5, pp. S573-S577, 2001
  16. S. A. Burns, "The spatially resolved refractometer," J. Refract. Surg., vol. 16, no. 5, pp. S566-S569, 2000
  17. M. Mrochen, M. Kaemmerer, P. Mierdel, H.-E. Krinke, and T. Seiler, "Principles of Tscherning aberrometry," J. Refract. Surg., vol. 16, no. 5, pp. S570-S571, 2000
  18. V. V. Molebny, S. I. Panagopoulou, S. V. Molebny, Y. S. Wakil, and I. G. Pallikaris, "Principles of ray tracing aberrometry," J. Refract. Surg., vol. 16, no. 5, pp. S572-S575, 2000
  19. B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction," J. Opt. Soc. Am. A, vol. 19, no. 5, pp. 833-839, 2002 [CrossRef]
  20. W. N. Charman, Handbook of Optics, vol. 1, 2nd ed., M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe eds. (McGraw-Hill, New York, 1995), chap. 24
  21. Ophthalmic Test, The Korean Ophthalmological Society ed. (Jin Publishing, Seoul, 2002)
  22. M. Nohda, I. Umemura, and T. Arai, "Eye-refractometer device", US patent 4390255, 1983
  23. K. Sekiguchi, "Ophthalmic measuring apparatus", US patent 4878750, 1989
  24. R. J. Noll. "Zernike polynomials and atmosphericturbulence," J. Opt. Soc. Am., vol. 66, no. 3, pp. 207-211, 1976 [CrossRef]
  25. T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, "Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer," Optom. Vis. Sci., vol. 80, no. 1, pp. 6-14, 2003 [CrossRef]
  26. R. P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, and T. Seiler, "Messplatz zur bestimmung der monochromatischen aberration des menschlichen auges," Ophthalmologe, vol. 96, pp. 441-445, 1997 [CrossRef]
  27. M. S. Smirnov, "Measurement of the wave aberration of the human eye," Biofizika, vol. 6, pp. 687-703, 1961
  28. J. Hartmann, "Bemerkungen uber den Bau und die Justirung von Spektrographen." Z. Instrumentenkd., vol. 20, pp. 47-58, 1900
  29. R. V. Shack and B. C. Platt, "Production and use of a lenticular Hartmann screen," J. Opt. Soc. Am., vol. 61, p. 656, 1971
  30. D. M. Topa, "Wavefront reconstruction for the Shack-Hartmann wavefront sensor," Proc. SPIE, vol. 4769, pp. 101-115, 2002 [CrossRef]
  31. L. A. Poyneer, "Advanced techniques for Fourier transform wavefront reconstruction," Proc. SPIE, vol. 4839, pp. 1023-1034, 2003 [CrossRef]
  32. W. J. Geeraets and E. R. Berry, "Ocular spectral characteristics as related to hazards from lasers and other light sources," Am. J. Ophthalmot., vol. 66, no. 1, pp. 15-20, 1968
  33. Y. Kawagoe, N. Takai, and T. Asakura, "Speckle reduction by a rotating aperture at the fourier trans-form plane," Opt. Laser Eng., vol. 3, pp. 197-218, 1982 [CrossRef]
  34. D. R. Neal, J. Copland, and D. A. Neal, "Shack-Hartmann wavefront sensor precision and accuracy," Proc. SPIE, vol. 4779, pp. 148-160, 2002 [CrossRef]
  35. W. Jiang, H. Xian, and F. Shen, "Detection error of Shack-Hartmann wavefront sensors," Proc. SPIE, vol. 3126, pp. 534-544, 1997 [CrossRef]
  36. S. Thomas, "Optimized centroid computing in a Shack-Hartmann sensor," Proc. SPIE, vol. 5490, pp. 1238-1246, 2004 [CrossRef]
  37. L. A. Poyneer, Correlation wave-front sensing algorithms for Shack-Hartmann-based adaptive optics using a point source, Report No. UCRL-JC-152975, Lawrence Livermore National Lab. (Livermore, CA, USA), 2003

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited